优化模型与软件工具

主讲教师: 董庆兴

华中师范大学 信息管理学院 qxdong@mail.ccnu.edu.cn All rights reserved

2017年10月10日

大纲

范数

满足以下条件的函数 $f: \mathbb{R}^n \to \mathbb{R}, \mathbf{dom} \ f = \mathbb{R}^n$ 称为范数:

- f 非负: 对所有的 $\mathbf{x} \in \mathbb{R}^n$ 有 $f(\mathbf{x}) \geq 0$
- f 正定: 仅对 $\mathbf{x} = 0$ 有 $f(\mathbf{x}) = 0$
- f 齐次: 对所有 $\mathbf{x} \in \mathbb{R}^n$ 和 $t \in \mathbb{R}$ 有 $f(t\mathbf{x}) = |t|f(\mathbf{x})$
- ullet f 满足三角不等式: $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ 有 $f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$

收敛

收敛

设有序列 $\{\mathbf{x}_k\} \subseteq \mathbb{R}^n$ 及向量 $\mathbf{x}^* \in \mathbb{R}^n$,当 $k \to \infty$ 时有 $\|\mathbf{x}_k - \mathbf{x}^*\| \to 0$ 则称 $\{\mathbf{x}_k\}$ 收敛于 \mathbf{x}^* ,记作 $\{\mathbf{x}_k\} \to \mathbf{x}$

• $\{\mathbf{x}_k\}$ 收敛于 $\mathbf{x}^* \in \mathbb{R}^n$ 当且仅当 \mathbf{x}_k 的第 i 个分量收敛到 \mathbf{x}^* 的第 i 个分量: $|\mathbf{x}_{k(i)} - \mathbf{x}^*_{(i)}| \to 0\Big|_{k \to \infty}$

几何基本概念

直线 如果 $\mathbf{x}_1 \neq \mathbf{x}_2$ 为 \mathbb{R}^n 中的两个点,那么 $y = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \theta \in \mathbb{R}$ 组成一条穿越 \mathbf{x}_1 和 \mathbf{x}_2 的直线 线段 在上述定义中,如果 $\theta \in [0,1]$ 则构成 \mathbf{x}_1 和 \mathbf{x}_2 之间的线段 球 $\mathcal{B}(\mathbf{x},r) = \{\mathbf{y}||\mathbf{y} - \mathbf{x}|| \leq r\}$ 即中心为 \mathbf{x} 半径为 r 的球单位球 $\mathcal{B} = \{\mathbf{x} \in \mathbb{R}^n | ||\mathbf{x}|| \leq 1\}$, \mathcal{B} 是关于原点对称有界闭凸集 开球 $\mathcal{B}(\mathbf{x},r) = \{\mathbf{y}||\mathbf{y} - \mathbf{x}|| < r\}$ 即中心为 \mathbf{x} 半径为 r 的球

开集和内部

内点

对于 $\mathbf{x} \in C \subseteq \mathbb{R}^n$,如果存在 $\epsilon > 0$ 满足 $\{\mathbf{y} | \|\mathbf{y} - \mathbf{x}\|_2 \le \epsilon\} \subset C$,即存在一个以 \mathbf{x} 为中心的完全属于 C 的球,就称其为 C 的内点

内部

C 的所有内点组成的集合称为 C 的内部,用 int C 表示

开集

如果 int C = C, 那么 C 为开集, 也就是 C 的每个点都是内点

- 例子: $X = \{ \mathbf{x} \in \mathbb{R}^2 | x_1 \ge 0, x_2 > 0 \}$ 的内部是?
- 凸集的内部也是凸集

闭集

补集

对于 $C \subseteq \mathbb{R}^n$ 的补集就是 $\mathbb{R}^n \setminus C = \{\mathbf{x} | \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \notin C\}$

闭集

如果集合 $C\subseteq\mathbb{R}^n$ 的补集 $\mathbb{R}^n\setminus C=\{\mathbf{x}|\mathbf{x}\in\mathbb{R}^n,\mathbf{x}\notin C\}$ 是开集,则 C 为闭集

- 例子: $X = \{\mathbf{x} \in \mathbb{R}^2 | x_1 \ge 0, x_2 > 0\}$ 是开集还是闭集?
- \mathbb{R}^n 中 \mathbb{R}^n 和 \emptyset 都既是开集又是闭集
- 任意个闭集的交集依然是闭集
- 有限个闭集的并集依然是闭集

闭包

闭包

集合补集的内部的补集 **cl** $C = \mathbb{R}^n \setminus \mathbf{int} (\mathbb{R}^n \setminus C)$

- 如果存在一个序列 $\{\mathbf{x}_k\} \subseteq C$ 使得 $\{\mathbf{x}_k\} \to \mathbf{x}$,则称 \mathbf{x} 是非空集合 $C \subseteq \mathbb{R}^n$ 的闭包点
- 那么 $C \subseteq \mathbb{R}^n$ 的闭包点的集合就是 **cl** C
- 一个集合是闭集当且仅当该集合包含其闭包: C 是闭集等价于 \mathbf{cl} $C \subseteq C$
- 凸集的闭包依然是凸集

边界

边界

非空集合 $C \subseteq \mathbb{R}^n$ 的边界 **bd** C 是该集合闭包和其补集的闭包的交集: **bd** $C = \mathbf{cl}$ $C \cap \mathbf{cl}$ $(\mathbb{R}^n \setminus C)$

- 集合 C 的边界也可定义为 **bd** $C = \mathbf{cl}$ $C \setminus \mathbf{int}$ C
- 边界点 $\mathbf{x} \in \mathbf{bd}$ C,对于所有 $\epsilon > 0$,存在 $\mathbf{y} \in C$ 和 $\mathbf{z} \notin C$ 满足 $\|\mathbf{y} \mathbf{x}\|_2 \le \epsilon$, $\|\mathbf{z} \mathbf{x}\|_2 \le \epsilon$

仿射

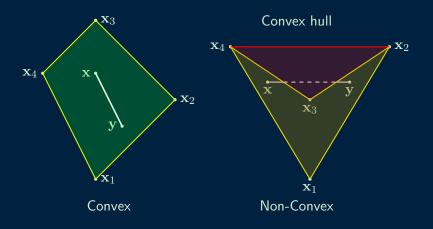
- 仿射集合 如果通过 $C \subseteq \mathbb{R}^n$ 中任意两个不同点的直线仍然在 C 中,那么集合 C 是仿射的。也就是,对于 $\mathbf{x}_1 \neq \mathbf{x}_2 \in C, \theta \in \mathbb{R}$ 为 \mathbb{R}^n 中的两个点,那么有 $\mathbf{y} = \theta \mathbf{x}_1 + (1-\theta)\mathbf{x}_2 \in C$
- 仿射组合 如果 $\sum_{i=1}^{k} \theta_i = 1$,我们称具有 $y = \sum_{i=1}^{k} \theta_i x_i$ 形式的点为 x_1, \dots, x_k 的仿射组合
 - 仿射包 $C\subseteq\mathbb{R}^n$ 中的点的所有的仿射组合组成的集合为 C 的仿射包,记为 aff $C=\left\{\sum_{i=1}^k\theta_i\mathbf{x}_i|\mathbf{x}_1,\cdots,\mathbf{x}_k\in C,\sum_{i=1}^k\theta_i=1\right\}$
- 仿射集: $\{\mathbf{x}|A\mathbf{x}=\mathbf{b}\}$
- ullet 仿射包: \mathbb{R}^2 上的单位圆环 $\{\mathbf{x}\in\mathbb{R}^2|x_1^2+x_2^2=1\}$ 的仿射包是 \mathbb{R}^2

相对内部和相对边界

相对内部 定义集合 $C \subseteq \mathbb{R}^n$ 的相对内部为 aff C 的内部,即 relint $C = \{ \mathbf{x} \in C | B(\mathbf{x}, r) \cap \text{aff } C \subseteq C, \text{ for some } r > 0 \}$ 相对边界 同样可以定义 cl $C \setminus \text{relint } C \supset C$ 的相对边界

- $C = \{\mathbf{x} | \theta \mathbf{x}_1 + (1 \theta) \mathbf{x}_2, \theta \in [0, 1] \}$ 内部为空集,边界为自身,相对内部是连接 \mathbf{x}_1 和 \mathbf{x}_2 的线段(去掉端点),相对边界为 \mathbf{x}_1 和 \mathbf{x}_2
- $C = \{\mathbf{x} \in \mathbb{R}^3 | -1 \le x_1 \le 1, -1 \le x_2 \le 1, x_3 = 0\}$ 。其仿射包为 (x_1, x_2) 平面,C 的内部为空,边界为集合自身;但其相对内部为 **relint** $C = \{\mathbf{x} \in \mathbb{R}^3 | -1 < x_1 < 1, -1 < x_2 < 1, x_3 = 0\}$,相对边界 为边框 $\{\mathbf{x} \in \mathbb{R}^3 | \max\{|x_1|, |x_2|\} = 1, x_3 = 0\}$

凸集和凸包



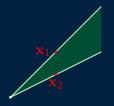
凸包

凸组合 我们称点 $\mathbf{x} = \sum_{i=1}^k \theta_i \mathbf{x}_i$ 为点 $\mathbf{x}_1, \dots, \mathbf{x}_k$ 的凸组合,其中, $\sum_{i=1}^k \theta_i = 1$ $\theta_i \geq 0, i = 1, \dots, k$ 凸包 集合 C 中所有点的凸组合的集合称为 C 的凸包 \mathbf{conv} C

● 集合的凸包是包含该集合的最小凸集

主讲教师: 董庆兴 优化模型与软件工具 13

锥 如果对于任意 $\mathbf{x} \in C$ 和 $\theta \geq 0$ 都有 $\theta \mathbf{x} \in C$,则称 C 是锥 如果集合 C 是锥并且是凸的,则 C 为凸锥,也就是对于 任意的 $\mathbf{x}_1, \mathbf{x}_2 \in C$ 和 $\theta_1, \theta_2 \geq 0$ 有 $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \geq 0$



Convex cone with origin

Convex cone without origin Nonconvex cone

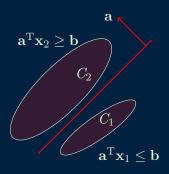
锥包

锥组合 我们称点 $\mathbf{x} = \sum_{i=1}^k \theta_i \mathbf{x}_i$ 为点 $\mathbf{x}_1, \dots, \mathbf{x}_k$ 的锥组合(非负 线性组合),其中, $\theta_i \geq 0, i = 1, \dots, k$ 。如果 \mathbf{x}_i 均属于凸锥 C,那么他们的每一个锥组合都在 C 中

锥包 集合 C 中所有点的锥组合的集合称为 C 的锥包,也就是 $\{\theta_1\mathbf{x}_1+\cdots,\theta_k\mathbf{x}_k|\mathbf{x}_i\in C,\theta_i\geq 0,i=1,\cdots,k\}$

分离超平面

- 称集合 C_1 C_2 被超平面 $H = \{\mathbf{a}^T\mathbf{x} = \mathbf{b}\}$ 分离如果 两集合分别位于 H 的不同 的半空间内,也就是 $\mathbf{a}^T\mathbf{x}_1 \leq \mathbf{b} \leq \mathbf{a}^T\mathbf{x}_2, \forall \mathbf{x}_1 \in C_1, \forall \mathbf{x}_2 \in C_2$ 或 $\mathbf{a}^T\mathbf{x}_2 \leq \mathbf{b} \leq \mathbf{a}^T\mathbf{x}_1, \forall \mathbf{x}_1 \in C_1, \forall \mathbf{x}_2 \in C_2$
- 超平面 $H = \{\mathbf{a}^T \mathbf{x} = \mathbf{b}\}$ 就 是集合 C_1, C_2 的分离超平 面



支撑超平面

- $C \subseteq \mathbb{R}^n$ 而 \mathbf{x}_0 是其边界 \mathbf{bd} C 上一点,即 $\mathbf{x}_0 \in (\mathbf{cl}$ $C \setminus \mathbf{int}$ C),如果 $\mathbf{a} \neq 0$,并满足 $\forall \mathbf{x} \in C, \mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_0$,则称超平面 $H = \{\mathbf{a}^T \mathbf{x} = \mathbf{b}\}$ 为集合 C 在点 \mathbf{x}_0 处的支撑(支持)超平面
- 几何解释就是超平面 H 与 C 相切于 点 \mathbf{x}_0 , 而且半空间 $\{\mathbf{x}|\mathbf{a}^T\mathbf{x} \leq \mathbf{a}^T\mathbf{x}_0\}$ 包含 C
- 如果点 $x_0 \in \mathbf{cl}$ C 那么一个超平面 H 分离了 C 和单点集合 $\{\mathbf{x}_0\}$, 则称 H 在 \mathbf{x}_0 处支撑了 C

- \Diamond C \in \mathbb{R}^n 中的凸集,C 的支撑半空间是包含 C 的闭半空间,且有一个点在 C 的边界上。C 的支撑超平面就是 C 支撑半空间的边界,它本身是一个超平面
- 换句话说,C 的支撑超平面可以表示成 $H = \{\mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{b}, \mathbf{a} \neq 0\}$,其中对于每个 $\mathbf{x} \in C, \mathbf{a}^T \mathbf{x} \leq \mathbf{b}$ 且至少有一个点 $\mathbf{x}_0 \in C$ 使得 $\mathbf{a}^T \mathbf{x} = \mathbf{b}$
- 因此 C 的支撑超平面与一个线性 函数有关,该函数找到 C 上的最 大值。经过给定点 $\mathbf{x}_0 \in C$ 的支撑 超平面对应于向量 \mathbf{a}_1 它是 C 在 \mathbf{x}_0 处的法向量

投影定理

投影定理

对于非空闭凸集 $C \in \mathbb{R}^n$ 和向量 $\mathbf{z} \in \mathbb{R}^n$,则存在一个唯一的向量 $\mathbf{x}^* \in C$ 为 $\min_{\mathbf{x} \in C} \|\mathbf{z} - \mathbf{x}\|_2$ 的解, \mathbf{x} 被称作 \mathbf{z} 在 C 上的投影并且满足

$$(\mathbf{z} - \mathbf{x}^*)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*) \le 0, \forall \mathbf{x} \in C$$
 (1)

证明: 求解 $\min_{\mathbf{x} \in C} \|\mathbf{z} - \mathbf{x}\|_2$ 等价于求解凸可微函数 $f(\mathbf{x}) = \frac{\|\mathbf{z} - \mathbf{x}\|_2^2}{2}$,可知 \mathbf{x}^* 为 f 在 C 上的极小值当且仅当 $\nabla f(\mathbf{x}^*)^{\mathrm{T}}(\mathbf{x} - \mathbf{x}^*) \geq 0, \forall \mathbf{x} \in C$,而 $\nabla f(\mathbf{x}^*) = (\mathbf{x}^* - \mathbf{z})$,因此可得式 (??)。 假设有 \mathbf{x}_1^* 和 \mathbf{x}_2^* 同时是 \mathbf{z} 在 C 上的投影,那由式 (??) 可得

$$(\mathbf{z} - \mathbf{x}_{\mathbf{1}}^*)^T (\mathbf{x}_{\mathbf{2}}^* - \mathbf{x}_{\mathbf{1}}^*) \le 0, (\mathbf{z} - \mathbf{x}_{\mathbf{2}}^*)^T (\mathbf{x}_{\mathbf{1}}^* - \mathbf{x}_{\mathbf{2}}^*) \le 0$$

不等式两端相加可得 $(\mathbf{x_2^*} - \mathbf{x_1^*})^{\mathrm{T}}(\mathbf{x_2^*} - \mathbf{x_1^*}) = \|\mathbf{x_2^*} - \mathbf{x_1^*}\|_2^2 \le 0$,由范数几何意义可知, $\mathbf{x_2^*} = \mathbf{x_1^*}$,从而投影向量唯一

支撑超平面定理

支撑超平面定理

设 $C \in \mathbb{R}^n$ 中的非空凸集,向量 $\bar{x} \in \mathbb{R}^n$,若 $\bar{x} \notin \text{int } C$,则存在一个穿过 \bar{x} 的超平面使得 X 属于它的一个闭半空间,即存在向量 $a \neq 0$ 满足

$$\mathbf{a}^{\mathrm{T}}\bar{\mathbf{x}} \le \mathbf{a}^{\mathrm{T}}\mathbf{x}, \ \forall \mathbf{x} \in C \tag{2}$$

证明:考虑 C 的闭包 \mathbf{cl} C, 可知 \mathbf{cl} C 为凸集(作业:证明这一结论)。可知一定存在 $\{\mathbf{x}_k\}$ 为一个 \mathbf{cl} C 外收敛于 $\bar{\mathbf{x}}$ 的点列即 $\{\mathbf{x}_k\} \to \bar{\mathbf{x}}$ 且 $\forall k, \mathbf{x}_k \notin C$ (思考:为什么?)。今 \mathbf{y}_k 为 \mathbf{x}_k 在 \mathbf{cl} C 上的投影,则根据投影定理有

$$(\mathbf{y}_k - \mathbf{x}_k)^{\mathrm{T}} (\mathbf{x} - \mathbf{y}_k) \ge 0, \ \forall \mathbf{x} \in \mathbf{cl} \ C$$

因此对于所有 $\mathbf{x} \in \mathbf{cl}$ C 和所有 k 有

$$(\mathbf{y}_k - \mathbf{x}_k)^{\mathrm{T}} \mathbf{x} \ge (\mathbf{y}_k - \mathbf{x}_k)^{\mathrm{T}} \mathbf{y}_k$$

$$= (\mathbf{y}_k - \mathbf{x}_k)^{\mathrm{T}} (\mathbf{y}_k - \mathbf{x}_k) + (\mathbf{y}_k - \mathbf{x}_k)^{\mathrm{T}} \mathbf{x}_k$$

$$\ge (\mathbf{y}_k - \mathbf{x}_k)^{\mathrm{T}} \mathbf{x}_k$$

支撑超平面定理:证明

所以我们可以将上述不等式重写为

$$\mathbf{a}_k^{\mathrm{T}} \mathbf{x} \ge \mathbf{a}_k^{\mathrm{T}} \mathbf{x}_k, \ \forall \mathbf{x} \in \mathbf{cl} \ C, \ \forall k$$
 (3)

其中

$$\mathbf{a}_k = \frac{\mathbf{y}_k - \mathbf{x}_k}{\|\mathbf{y}_k - \mathbf{x}_k\|}$$

可知 $\|\mathbf{a}_k\|=1, \forall k$,因此 $\{\mathbf{a}_k\}$ 有界。从而 $\{\mathbf{a}_k\}$ 存在一个收敛子序列 $\{\mathbf{a}_k\}_{\mathcal{K}}$ (Bolzano-Weierstrass 定理)收敛到 $a\neq 0$,由 $\mathbf{x}_k\to \bar{\mathbf{x}}, \mathbf{a}_k\to \mathbf{a}$,考虑式 (??) 中 $\mathbf{a}_k\in \{\mathbf{a}_k\}_{\mathcal{K}}$,令 $k\to\infty$ 可得

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \ge \mathbf{a}^{\mathrm{T}}\bar{\mathbf{x}}, \ \forall \mathbf{x} \in C$$

命题得证。■