ury e [[eWS[-UOpSeJA o BJRISON -

VIV(] INOY] ONINYVAT

006.31
AlG

o)
O

e

age Crop DEMO: Purchase from \

Yaser S. Abu-Mostafa
Malik Magdon-Ismail
Hsuan-Tien Lin

AMLbook.com

http://www.a-pdf.com/?pcp-demo

L EARNING
F'ROM
[DATA

A\ SHORT COURSE

“This 1s a short cou

- This book covers the fundamenta
stubject should master these fundam

- The authors are professors at Caltec
text for their popular courses on ma

The authors at €

overfitting
deterministic 1
logistic
VC
nonlinear transformai
linear models
cross validation
ErTor Imeasures t-}"pﬂﬁ |
18 learning feasibl
noisy targets
classification

linear regression

I

7t

AMLbook.com

not a hurried course.”

machine learning, Any student of the
5.

], and NTU, where this book is the main
s learning,

h, their alma mater

wehastic gradient descent

> data snooping

sssion
i learning curve
SO0
sampling bias
training versus testing
bias-variance tradeoff

sarning data contamination
perceptron learning

Occam’s razor
weight decay
llarization

ISBMN 978-1-60049-006-4

L]

81600749

The book website AMLbook.com
contains supporting material for
instructors and readers.

LEARNING FrROM DATA
A SHORT COURSE

Yaser S. Abu-Mostafa
California Institute of Technology

Malik Magdon-Ismail
Rensselaer Polytechnic Institule

Hsuan-Tien Lin
National Tarwan University

i

AMLbook.com

Yaser S. Abu-Mostafa Malik Magdon-Ismail
Departments of Electrical Engineering Department of Computer Science
and Computer Science

California Institute of Technology Rensselaer Polytechnic Institute
Pasadena, CA 91125, USA Troy, NY 12180, USA
yaser@caltech.edu magdon@cs.rpi.edu

Hsuan-Tien Lin

Department of Computer Science
and Information Engineering
National Taiwan University
Taipei, 106, Taiwan
htlin@csie.ntu.edu.tw

ISBN 10:1-60049-006-9 ;
ISBN 13:978-1-60049-006-4 Rad i

(©2012 Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin. 1.00

All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the authors. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted in any form or by any
means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the authors, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act.

Limit of Liability /Disclaimer of Warranty: While the authors have used their best
efforts in preparing this book, they make no representation or warranties with re-
spect to the accuracy or completeness of the contents of this book and specifically
disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales
materials. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a professional where appropriate. The authors
shall not be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

The use in this publication of tradenames, trademarks, service marks, and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

This book was typeset by the authors and was printed and bound in the United
States of America.

To our teachers, and to our students

Preface

This book is designed for a short course on machine learning. It is a short
course, not a hurried course. From over a decade of teaching this material, we
have distilled what we believe to be the core topics that every student of the
subject should know. We chose the title ‘learning from data’ that faithfully
describes what the subject is about, and made it a point to cover the topics in
a story-like fashion. Our hope is that the reader can learn all the fundamentals
of the subject by reading the book cover to cover.

Learning from data has distinct theoretical and practical tracks. If you
read two books that focus on one track or the other, you may feel that you
are reading about two different subjects altogether. In this book, we balance
the theoretical and the practical, the mathematical and the heuristic. Our
criterion for inclusion is relevance. Theory that establishes the conceptual
framework for learning is included, and so are heuristics that impact the per-
formance of real learning systems. Strengths and weaknesses of the different
parts are spelled out. Our philosophy is to say it like it is: what we know,
what we don’t know, and what we partially know.

The book can be taught in exactly the order it is presented. The notable
exception may be Chapter 2, which is the most theoretical chapter of the book.
The theory of generalization that this chapter covers is central to learning
from data, and we made an effort to make it accessible to a wide readership.
However, instructors who are more interested in the practical side may skim
over it, or delay it until after the practical methods of Chapter 3 are taught.

You will notice that we included exercises (in gray boxes) throughout the
text. The main purpose of these exercises is to engage the reader and enhance
understanding of a particular topic being covered. Our reason for separating
the exercises out is that they are not crucial to the logical flow. Nevertheless,
they contain useful information, and we strongly encourage you to read them,
even if you don’t do them to completion. Instructors may find some of the
exercises appropriate as ‘easy’ homework problems, and we also provide ad-
ditional problems of varying difficulty in the Problems section at the end of
each chapter.

To help instructors with preparing their lectures based on the book, we
provide supporting material on the book’s website (AMLbook . com). There is
also a forum that covers additional topics in learning from data. We will

vii

PREFACE

discuss these further in the Epilogue of this book.

Acknowledgment (in alphabetical order for each group): We would like to
express our gratitude to the alumni of our Learning Systems Group at Caltech
who gave us detailed expert feedback: Zehra Cataltepe, Ling Li, Amrit Pratap,
and Joseph Sill. We thank the many students and colleagues who gave us useful
feedback during the development of this book, especially Chun-Wei Liu. The
Caltech Library staff, especially Kristin Buxton and David McCaslin, have
given us excellent advice and help in our self-publishing effort. We also thank
Lucinda Acosta for her help throughout the writing of this book.

Last, but not least, we would like to thank our families for their encourage-
ment, their support, and most of all their patience as they endured the time
demands that writing a book has imposed on us.

Yaser S. Abu-Mostafa, Pasadena, California.
Malik Magdon-Ismail, Troy, New York.

Hsuan-Tien Lin, Taipei, Taiwan.

March, 2012.

viii

Contents

Preface vii

1 The Learning Problem 1

1.1 Problem Setup 1

1.1.1 Components of Learning 3

1.1.2 A Simple Learning Model 5

1.1.3 Learning versus Design 9

1.2 Typesof Learning 11

1.2.1 Supervised Learning 11

1.2.2 Reinforcement Learning 12

1.2.3 Unsupervised Learning 13

1.2.4 Other Views of Learning 14

1.3 Is Learning Feasible?, 15

1.3.1 Outsidethe Data Set. 16

1.3.2 Probability to the Rescue 18

1.3.3 Feasibility of Learning 24

14 Errorand Noise 27

1.4.1 Error Measures 28

1.42 Noisy Targets 30

1.5 Problems 33

2 Training versus Testing 39

2.1 Theory of Generalization 39

2.1.1 Effective Number of Hypotheses 41
2.1.2 Bounding the Growth Function 46 .

2.1.3 The VC Dimension 50

2.1.4 The VC Generalization Bound 53

2.2 Interpreting the Generalization Bound 55

2.2.1 Sample Complexity 57

2.2.2 Penalty for Model Complexity 58

223 TheTestSet 59

2.2.4 Other Target Types- 61

2.3 Approximation-Generalization Tradeoff 62

CONTENTS

2.3.1 Biasand Variance 62

2.3.2 The Learning Curve 66

24 Problems 69

3 The Linear Model 77
3.1 Linear Classification 77
3.1.1 Non-Separable Data, 79

3.2 Linear Regression 82
3.2.1 The Algorithm 84

3.2.2 Generalization Issues 87

3.3 Logistic Regression 88
3.3.1 Predicting a Probability 89

3.3.2 Gradient Descent 93

3.4 Nonlinear Transformation 99
341 TheZSpace 99

34.2 Computation and Generalization 104

35 Problems 109

4 Overfitting 119
4.1 When Does Overfitting Occur? 119
4.1.1 A Case Study: Overfitting with Polynomials 120

4.1.2 Catalysts for Overfitting 123

4.2 Regularization 126
421 A Soft Order Constraint 128

4.2.2 Weight Decay and Augmented Error 132

4.2.3 Choosing a Regularizer: Pill or Poison? 134

4.3 Validation N 137
4.3.1 The Validation Set 138

4.3.2 Model Selection 141

4.3.3 Cross Validation 145

4.3.4 Theory Versus Practice 151

44 Problems 154

5 Three Learning Principles 167
5.1 Occam’s Razor 167
9.2 Sampling Bias 171
5.3 Data Snooping 173
5.4 Problems 178
Epilogue 181
Further Reading 183

CONTENTS

Appendix Proof of the VC Bound 187
A.1 Relating Generalization Error to In-Sample Deviations 188
A.2 Bounding Worst Case Deviation Using the Growth Function . . 190
A.3 Bounding the Deviation between In-Sample Errors 191

Notation 193

Index 197

Xi

NOTATION

A complete table of the notation used in
this book is included on page 193, right
before the index of terms. We suggest
referring to it as needed.

xil

Chapter 1

The Learning Problem

If you show a picture to a three-year-old and ask if there is a tree in it, you will
likely get the correct answer. If you ask a thirty-year-old what the definition
of a tree is, you will likely get an inconclusive answer. We didn’t learn what
a tree is by studying the mathematical definition of trees. We learned it by
looking at trees. In other words, we learned from ‘data’.

Learning from data is used in situations where we don’t have an analytic
solution, but we do have data that we can use to construct an empirical solu-
tion. This premise covers a lot of territory, and indeed learning from data is
one of the most widely used techniques in science, engineering, and economics,
among other fields.

In this chapter, we present examples of learning from data and formalize
the learning problem. We also discuss the main concepts associated with
learning, and the different paradigms of learning that have been developed.

1.1 Problem Setup

What do financial forecasting, medical diagnosis, computer vision, and search
engines have in common? They all have successfully utilized learning from
data. The repertoire of such applications is quite impressive. Let us open the
discussion with a real-life application to see how learning from data works.

Consider the problem of predicting how a movie viewer would rate the
various movies out there. This is an important problem if you are a company
that rents out movies, since you want to recommend to different viewers the
movies they will like. Good recommender systems are so important to business
that the movie rental company Netflix offered a prize of one million dollars to
anyone who could improve their recommendations by a mere 10%. .

The main difficulty in this problem is that the criteria that viewers use to
rate movies are quite complex. Trying to model those explicitly is no easy task,
so it may not be possible to come up with an analytic solution. However, we

1, THE LEARNING PROBLEM 1.1, Propiem Setup

matell movie and add contrilutions predicted

3 from each mebor 1
viewer factors A rating

movie (@ o[@] ------)
W \

. &
B, % 2
i) L
(' r\-
rl_? % k7
(2 P
P
Lo el [
) (- -
o "_"4_ -
o

Figure 1.1: A model for how a viewer rates a movie

know that the historical rating data reveal a lot about how people rate movies,
40 we may be able to construct a good empirical solution. There is a great
deal of data available to movie rental companies, since they often ask their
viewers to rate the movies that they have already seen.

Figure 1.1 illustrates a specific approach that was widely used in the
million-dollar competition. Here is how it works. You describe a movie as
a long array of different factors, e.g., how much comedy is in it, how com-
plicated is the plot. how handsome is the lead actor, ete. Now, vou describe
each viewer with corresponding factors; how much do they like comedy. do
they prefer simple or complicated plots, how important are the looks of the
lead actor, and so on. How this viewer will rate that movie is now estimated
based on the match /mismatch of these factors. For example, if the movie is
pure comedy and the viewer hates comedies, the chances are he won't like it.
1f you take dozens of these factors describing many facets of a movie's content
and a viewer's taste, the conclusion based on matching all the factors will be
a good predictor of how the viewer will rate the movie.

The power of learning from data is that this entire process can be auto-
mated, without any need for analyzing movie content or viewer taste. To do
80, the leaming algorithm ‘reverse-engineers’ these factors based solely on pre-

— .

2

1. Tue LeagninG PROBLEM 1.1, PronLEM SETUP

vious ratings. It starts with random factors, then tunes these factors to make
them more and more aligned with how viewers have rated movies before, until
they are ultimately able to predict how viewers rate movies in general. The
factors we end up with may not be as intuitive as ‘comedy content’; and in
fact can be quite subtle or even incomprehensible. After all, the algorithm is
only trying to find the best way to predict how a viewer would rate a movie,
not necessarily explain to us how it is done. This algorithm was part of the
winning =olution in the million-dollar competition.

1.1.1 Components of Learning

The movie rating application captures the essence of learning from data, and
so do many other applications from vastly different fields. In order to abstract
the common core of the learning problem, we will pick one application and
use it as a metaphor for the different components of the problem. Let us take
credit approval as our metaphor.

Suppose that a bank receives thousands of credit card applications every
day, and it wants to automate the process of evaluating them. Just as in the
case of movie ratings, the bank knows of no magical formula that can pinpoint
when eredit should be approved, but it has a lot of data. This calls for learning
from data, so the bank uses historical records of previous customers to figure
onut a good formula for credit approval.

Each customer record has personal information related to credit, such as
annual salary, vears in residence, outstanding loans, ete, The record also keeps
track of whether approving credit for that customer was a good idea, Lie., did
the bank make money on that customer. This data guides the construction of
a stuceessful formula for credit approval that can be used on future applicants.

Let us give names and symbols to the main components of this learning
problem. There is the input x (customer information that is used to make
a credit decision), the unknown target function f: X' — Y (ideal formula for
credit approval), where X is the input space (set of all possible inputs x), and
is the output space (set of all possible outputs, in this case just a yes/no deci-
sion]. There is a data set D of input-output examples (x1, 41), -+ o (Xn. Un)5
where y,, = f{x,) for n = 1...., N (inputs corresponding to previous customers
and the correct eredit decision for them in hindsight). The examples are often
referred to as data points. Finally, there is the learning algorithm that uses the
data set D to pick a formula g: X — ¥ that approximates f. The algorithm
chooses g from a set of candidate formulas under consideration, which we call
the hypothesis set H. For instance, H could be the set of all linear formulas
from which the algorithm would choose the best linear fit to the data, as we
will introduce later in this section.

When a new customer applies for credit, the bank will base its decision
on g (the hypothesis that the learning algorithm produoced), not on [(the
ideal target funetion which remains unknown). The decision will be good only
to the extent that g faithfully replicates f. To achieve that, the algorithm

1. THE LEarNING PROBLEM 1.1. ProBLEM SETUP

UNKNOWN TARGET FUNCTION
f:i Xy

(idenl eredit approval formwla)

|

TRAINING EXAMPLES
(a1) (X pe)a o (Xn, Un)

(Mastorivsd reconds ”If credit customers)

LEARNING FINAL
ALGORITHM HYPOTHESIS
A grf

//'

'n

HYPOTHESIS SET
H

(learmed credit approval fermula)

{#et n'll_lr condidals Sormunlas |

Figure 1.2: Basic setup of the learning problem

chooses g that best matches f on the train ing examples of previous customers,
with the hope that it will continue to match J on new customers, Whether
or not this hope is justified remains to be seen. Figure 1.2 illustrates the
components of the learning problem.

Exercise 1.1

Express each of the following tasks in the framework of learning from data by
specifying the input space ., output space V, target function f; X' — ¥,
and the specifics of the data set that we will learn from.
(a) Medical diagnosis: A patient walks in with a medical history and some
symptoms, and you want to identify the problem.
(b) Handwritten digit recognition (for example pestal zip code recognition
for mail sorting).
(c) Determining if an email is spam or not.
- d) Predicting how an electric load varies with price, temperature, and
day of the weak,

() A problem of interest to you for which there is no analytic solution,
but you have data from which to construet an empirical solution.

1. THE LEARNING PROBLEM 1.1. PRonLEM SETUP

Wi will use the setup in Figure 1.2 as our definition of the learning problem.
Later on, we will consider a munber of refinements and variations to this basie
setup as needed. However, the essence of the problem will remain the same.
There is a target to be learned. It is unknown to us. We have a set of examples
generated by the target. The learning algorithm uses these examples to look
for a hypothesis that approximates the target.

1.1.2 A Simple Learning Model

Let us consider the different components of Figure 1.2. Given a specific learn-
ing problem, the target function and training examples are dictated by the
problem, However, the learning algorithm and hypothesis set are not. These
are solution tools that we get to choose. The hypothesis set and learning
algorithm are referred to informally as the learning model

Here is a simple model. Let X = R? be the input space, where B? is the
d-dimensional Euclidean space, and let Y = {41, -1} be the output space,
denoting a binary (ves/no) decision. In our eredit example, different coor-
dinates of the input vector x € B? correspond to salary, vears in residence,
outstanding debt, and the other data fields in a credit application. The hi-
nary oulpil y corresponds to approving or denying credit. We specify the
hypothesis set M through a fanetional form that all the hypotheses h £ H
share. The functional form fi{x) that we choose here gives different weights to
the different coordinates of x, reflecting their relative importance in the credit
decision. The weighted coordinates are then combined to form a ‘eredit score’
and the result is compared to a threshold value, If the applicant passes the
threshold, credit is approved: if not, credit is denled:

d
Approve credit if 3 wry > threshold,

il
Deny eredit if 3 wjx; < threshold.

=1

This formula can be written more compactly as

d
hfx}=ﬁifm((z u-,.rl-) +b). (L1
i=1

where 1, -,y are the components of the vector x; h(x) = +1 means ‘ap-
prove credit’ and ii(x) = —1 means ‘deny credit’; sign(s) = +1if s =0 and
sign(s) = -1 if s = 0.' The weights are w.--- . wy, and the threshold is
determined by the hias term b since in Equation (1.1), credit is aPEm"F:! i._f
E'Ll wir; = —h

This model of H is called the pereeptron, a name that it got in the context
of artificial intelligence. The learning algorithm will search H by looking for

I'T'he value of sign{s) when & = (1 is & simple technicality that we ignore for the momssmt

n

1. THE LEARNING PROBLEM 1.1. Prosuem Serur

{a) Misclassified data (b) Perfectly classified data

Figure 1.3: Perceptron classification of linvarly separable data in a two-
dimensional input space (a) Some training examples will be misclassified
(blue points in red region and vice versa) for cortain values of the weight
parameters which define the separating line. (b) A final hypothesis that
classifies all training examples correctly, (o is +1 and x is —1,)

weights and bias that perform well on the data set. Some of the weights
un, -+ g may end up being negative, corresponding to an adverse effect on
credit approval. For instance, the weight of the ‘outstanding debt’ field should
come out negative since more debt is not good for credit. The bias value b
may end up being large or small, reflecting how lenient or stringent the hank
should be in extending credit. The optimal choices of weights and bias define
the final hypothesis g € H that the algorithm produces.

Exercise 1.2
Suppose that we use a perceptron to detect spam messages. Let's say
that each email message is represented by the frequency of occurrence of
keywords, and the output is +1 if the message is considered spam.
(a) Can you think of some keywords that will end up with a large positive
weight in the perceptran?
(b) How about keywords that will get a negative weight?
() What parameter in the perceptron directly affects how many border-
line messages end up being classified as spam?

Figure 1.3 illustrates what a perceptron does in a two-dimensional case (d = 2).
The plane is split. by a line into two regions, the +1 decision region and the —1
decision region. Different values for the parameters wh.wa, b correspond to
different lines wyr, + wary + b = 0. If the data set is linearly separable, there
will be a choice for these parameters that classifies all the training examples
correctly.

G

1. THE LEARNING PROBLEM 1.1. ProsLem Sgrup

To simplify the notation of the perceptron formula, we will treat the bias b
as a weight uwy = b and merge it with the other weights into one vector
w = [wg,wy, -+ ,wy]", where T denotes the transpose of a vector, so w is a
column vectar, We also treat x as a column vector and modify it to become x =
iro. 21, ,2q4]", where the added coordinate ry is fixed at #p = 1. Formally
speaking, the input space is now

X:{I}KRdZ{EJ!g,ifI,"' ,I.;]TImu=I.I1ER-."'1JI-'.-!'ER}+

With this convention. wx = :I:n wyr;, and so Equation (1.1) can be rewrit-
ten in vector form as

hix) = sign(w'x). (1.2)

We now introduce the perceptron learning algorithm (PLA}. The algorithm
will determine what w should be, based on the data. Let us assume that the
data set is linearly separable, which means that there is a vector w that
makes (1.2} achieve the correct decision h{x,) = ¢ on all the training exam-
ples, as shown in Figure 1.3,

Our learning algorithm will find this w using a simple iterative method.
Here is how it works. At iteration ¢, where £ =0,1.2,... , there is a current
value of the weight vector, call it w(t). The algorithm picks one of the examples
from (x1. 1) - (Xx, yx) that is currently misclassified, call it (x{t), y(t)), and
uses it to update w(t). Since the example is misclassified, we have y(t) #
sign{w"(t)x(1)). The update rule is

wi(t 4 1) = wit) + ylt)x(t). (1.3)

This rule moves the houndary in the direction of classifying x(t) correctly, as
depicted in the figure above. The algorithm continues with further iterations
until there are no longer misclassified examples in the data set.

I

1. TrE LEARNING PROBLEM 1.1. ProsLEMm SETUP

Exercise 1.3
The weight update rule in (1.3) has the nice interpretation that it moves
in the direction of classifying x(t) correctly.
(a) Show that y{t)w™(t)x(t) < 0. [Hint: x(t) is misclassified by wit).]
(b) Show that y(tw" (¢ + Lix(t) > y(t)w"(t)x(t). [Hint: Use (1.3)]

() As far as classifying x(t) is concerned, argue that the move from wii)
ta wit + 1) is a move 'in the right direction’,

Although the update rule in (1.3} considers only oune training example al a
time and may ‘mess up’ the classification of the other examples that are not
involved in the current iteration, it turns out that the algorithm is puaranteed
to arrive at the right solution in the end. The proof is the subject of Proh-
lem 1.3. The result holds regardless of which example we choose from among
the misclassified examples in (x;.1,)- < (x%w,yn) at each iteration, and re-
gardless of how we initialize the weight vector to start the algorithm. For
simplicity, we can pick one of the misclassified examples at random (or cycle
through the examples and always choose the first misclassified one), amnd we
can initialize w(l) to the zero vector,

Within the infinite space of all weight vectors, the perceptron algorithm
wanages Lo find a weight vector that works, using a simple iterative pracess.
This illustrates how a learning algorithm ean effectively search an infinite
hypothesis set using a finite number of simple steps. This feature is character-
istic of many techniques that are used in learning, some of which are far more
sophisticated than the perceptron learning algorithm,

Exercise 1.4

Let us create our own target function f and data set D and see how the
perceptron learning algorithm works. Take d = 2 so you can visualize the
problem, and choose a random line in the plane as your target function,
where one side of the line maps to +1 and the other maps to —1. Choose
the inputs x,, of the data set as random points in the plane, and evaluate
the target function on each x,, to get the corresponding output g,

Now, generate a data set of size 20. Try the perceptron learning algorithm
on your data set and see how long it takes to converge and how well the

final hypothesis g matches your target f. You can find other ways to play
with this experiment in Prablem 1.4.

The perceptron learning algorithm succeeds in achieving its goal; finding a hy-
pothesis that classifies all the points in the data set T = {xnow) - (e, uw I}
correctly, Does this mean that this bypothesis will alsu be suceessful in classi-
fving new data points that are not in D7 This turns out to be the key question
iu tte theory of learning, a question that will be thoroughly examined in this
wok,

1. Tue LEARNING PROBLEM 1.1. ProBLEM SETUR

25
o o
a] 25
e]
; Be -
8 j; |
1 % (=]
A .
1< 10
I]
Size Size
(a) Coin data (b) Learned classifier

Figure 1.4: The learning approach to coin classification (a) Training data of
pennies, nickels, dimes, and quarters (1, 5, 10, and 25 cents] are represented
in i size-mass space where they fall into clusters, (b} A classification rule is
learned from the data set by separating the four clusters. A new coin will
be classified according to the region in the size-mass plane that it falls into.

1.1.3 Learning versus Design

So far, we have discussed what learning is. Now, we discuss what it is not. The
goal is to distinguish between learning and a related approach that is used for
similar problems. While learning is based on data, this other approach does
not use data. It is a ‘design’ approach based on specifications, and is often
discussed alongside the learning approach in pattern recognition literature,

Clonsider the problem of recognizing coins of different denominations, which
is relevant to vending machines, for example. We want the machine to recog-
nize quarters, dimes, nickels and pennies. We will contrast the “learning from
data’ approach and the ‘design from specifications’ approach for this prob-
lem. We assume that each coin will be represented by its size and mass, a
two-dimensional input,

In the learning approach, we are given a sample of coins from each of
the four denominations and we use these coins as our data set. We treat
the size and mass as the input vector, and the denomination as the output.
Figure 1.1.3 shows what the data set may look like in the input space. There
is some variation of size and mass within each class, but by and large coins
of the same denomination cluster together, The learning algorithm searches
for a hypothesis that classifies the data set well, If we want to classify a new
coin, the machine measures its size and mass, and then classifies it according
to the learned hypothesis in Figure 1.1.3.

In the design approach, we call the United States Mint and ask them about
the specifications of different coins. We also ask them about the pumber

1. THE LEARNING PROBLEM ~_ 1.1. PurosLEm SETUP

. 25

Mass
Mass

Size Size

{a) Probabilistic model of data (b) Inferred classifier

Figure 1.5: The design spproach to coin classification (a] A probabilistic
model for the size, mass, and denomination of coins is derived fram known
specifications. The figure shows the high probability region for each denom-
ination (1, 5, 10, and 25 cents) according to the model. (k) A classification
rule is derived analytically to minimize the probability of error in classifying
a ¢oin based on size and mass, The resulting regions for each denomination
are shown.

of coins of each denomination in circulation, in order to get an estimate of
the relative frequency of each coin. Finally, we make a physical model of
the variations in size and mass due to exposure fo the elements and due to
errors in measurement, We put all of this information together and compute
the full joint probability distribution of size, mass, and coin denomination
(Figure 1.5(a)). Once we have that Joint distribution, we can construct the
optimal decision rule to classify coins based on size and mass (Figure 1.5(h)).
The rule chooses the denomination that has the highest probability for a given
size and mass, thus achieving the smallest possible probability of error.?

The main difference between the learning approach and the design ap-
proach is the role that data plays. In the design approach, the problem is well
specified and one can analytically derive f without the need to see any data,
In the learning approach, the problem is much less specified, and one needs
data to pin down what [is.

Both approaches may be viable in some applications, but only the learning
approach is possible in many applications where the target function is un-
known. We are not trying to compare the utility or the performance of the
two approaches. We are just making the point that the design approach is
distinet from learning. This book is about learning,

*This is called Bayes optimal decision theory, Some learning models are based an the
same theory by estimating the probability from dats.

1

1. Tue LEARNING PROBLEM 1.2. Tvyees OF LEARNING

Exercise 1.5 | -
and which are more suited for the design approach? '
(a) Determining the age at which a particular medical test is recom-
mended —
(b) Classifying numbers into primes and non-primes.
{c) Detecting potential fraud in credit card charges
(d) Determining the time it would take a falling object to hit the ground
(e) Determining the optimal cycle for traffic lights in a busy intersection

1.2 Types of Learning

The hasic premise of learning from data is the use of a set of observations to
uncover an underlying process. It is a very hroad premise, and difficult to fit
into a single framework. As a result, different learning paradigms have arisen
to deal with different situations and different assumptions. In this section, we
introduce some of these paradigms.

The learning paradigm that we have discussed so far is called supervised
learning. It is the most studied and mest utilized type of learning, but it is
not the only one. Some variations of supervised learning are simple enough
to be accommodated within the same framework. Other variations are more
profound and lead to new concepts and techniques that take on lives of their
owtl, The most important variations have to do with the nature of the data
set.

1.2.1 Supervised Learning

When the training data contains explicit examples of what the correct output
should be for given inputs, then we are within the supervised learning set-
ting that we have covered so far. Consider the band-written digit recognition
problem (task (b) of Exercise 1.1). A reasonable data set for this problem is
a collection of images of hand-written digits, and for each image, what the
digit actually is. We thus have a set of examples of the form (image , digit).
The learning is supervised in the sense that some ‘supervisor’ has taken the
trouble to look at each input, in this case an image, and determine the correct
output, in this case one of the ten categories {0, 1.2.3.4,5,6,7,8,9}

While we are on the subject of variations, there is more than one way that
a data set can be presented to the learning process. Data sets are typically cre-
ated and presented to us in their entirety at the outset of the learning Process.
For instance, historical records of customers in the credit-card application,
and previous movie ratings of customers in the movie rating application, are
already there for us to nse. This protocol of a ‘ready’ data set is the most

1. THE LEARNING PROBLEM 1.2. TYPES OF LEARNING

common in practice, and it is what we will focus on in this book. However, it
is worth noting that two variations of this protocol have attracted a significant
body of work.

One is active learning, where the data set is acquired through queries that
we make. Thus, we get to choose a point x in the input space, and the
supervisor reports to us the target value for x. As you can see, this opens
the possibility for strategic choice of the point x to maximize its information
value, similar to asking a strategic question in a game of 20 questions.

Another variation is called online learning, where the data set is given to
the algorithm one example at a time. This happens when we have stream-
ing data that the algorithm has to process ‘on the run’. For instance, when
the movie recommendation system discussed in Section 1.1 is deployed, on-
line learning can process new ratings from current users and movies. Online
learning is also useful when we have limitations on computing and storage
that preclude us from processing the whole data as a batch. We should note
that online learning can be used in different paradigms of learning, not just in
supervised learning.

1.2.2 Reinforcement Learning

When the training data does not explicitly contain the correct output for each
input, we are no longer in a supervised learning setting. Consider a toddler
learning not to touch a hot cup of tea. The experience of such a toddler
would typically comprise a set of occasions when the toddler confronted a hot
cup of tea and was faced with the decision of touching it or not touching it.
Presumably, every time she touched it, the result was a high level of pain, and
every time she didn’t touch it, a much lower level of pain resulted (that of an
unsatisfied curiosity). Eventually, the toddler learns that she is better off not
touching the hot cup.

The training examples did not spell out what the toddler should have done,
but they instead graded different actions that she has taken. Nevertheless, she
uses the examples to reinforce the better actions, eventually learning what she
should do in similar situations. This characterizes reinforcement learning,
where the training example does not contain the target output, but instead
contains some possible output together with a measure of how good that out-
put is. In contrast to supervised learning where the training examples were of
the form (input , correct output), the examples in reinforcement learning are
of the form

((input , some output , grade for this output).

Importantly, the example does not say how good other outputs would have
been for this particular input.

Reinforcement learning is especially useful for learning how to play a game.
Imagine a situation in backgammon where you have a choice between different
actions and you want to identify the best action. It is not a trivial task to
ascertain what the best action is at a given stage of the game, so we cannot

12

1. THE LEARNING PROBLEM 1.2. TyPES OF LEARNING

° %@ P
) o type 4

n o]
g go 2 § type 3

s

0o o
type 2
)
o type 1
o
Size Size
(a) Unlabeled Coin data (b) Unsupervised learning

Figure 1.6: Unsupervised learning of coin classification (a) The same data
set of coins in Figure 1.4(a) is again represented in the size-mass space, but
without being labeled. They still fall into clusters. (b) An unsupervised
classification rule treats the four clusters as different types. The rule may
be somewhat ambiguous, as type 1 and type 2 could be viewed as one cluster

easily create supervised learning examples. If you use reinforcement learning
instead, all you need to do is to take some action and report how well things
went, and you have a training example. The reinforcement learning algorithm
is left with the task of sorting out the information coming from different ex-
amples to find the best line of play.

1.2.3 Unsupervised Learning

In the unsupervised setting, the training data does not contain any output
information at all. We are just given input examples x1,--- ,Xn. You may
wonder how we could possibly learn anything from mere inputs. Consider the
coin classification problem that we discussed earlier in Figure 1.4. Suppose
that we didn’t know the denomination of any of the coins in the data set. This
unlabeled data is shown in Figure 1.6(a). We still get similar clusters, but they
are now unlabeled so all points have the same ‘color’. The decision regions
in unsupervised learning may be identical to those in supervised learning, but
without the labels (Figure 1.6(b)). However, the correct clustering is less
obvious now, and even the number of clusters may be ambiguous.
Nonetheless, this example shows that we can learn something from the
inputs by themselves. Unsupervised learning can be viewed as the task of
spontaneously finding patterns and structure in input data. For instance, if
our task is to categorize a set of books into topics, and we only use general
properties of the various books, we can identify books that have similar prop-
erties and put them together in one category, without naming that category.

13

1. THE LEARNING PROBLEM 1.2. TYPES OF LEARNING

Unsupervised learning can also be viewed as a way to create a higher-
level representation of the data. Imagine that you don’t speak a word of
Spanish, but your company will relocate you to Spain next month. They
will arrange for Spanish lessons once you are there, but you would like to
prepare yourself a bit before you go. All you have access to is a Spanish radio
station. For a full month, you continuously bombard yourself with Spanish;
this is an unsupervised learning experience since you don’t know the meaning
of the words. However, you gradually develop a better representation of the
language in your brain by becoming more tuned to its common sounds and
structures. When you arrive in Spain, you will be in a better position to start
your Spanish lessons. Indeed, unsupervised learning can be a precursor to
supervised learning. In other cases, it is a stand-alone technique.

Exercise 1.6

For each of the following tasks, identify which type of learning is involved
(supervised, reinforcement, or unsupervised) and the training data to be
used. If a task can fit more than one type, explain how and describe the
training data for each type.

(a) Recommending a book to a user in an online bookstore
(b) Playing tic-tac-toe

(c) Categorizing movies into different types

(d) Learning to play music

(e) Credit limit: Deciding the maximum allowed debt for each bank cus-
tomer

Our main focus in this book will be supervised learning, which is the most
popular form of learning from data.

1.2.4 Other Views of Learning

The study of learning has evolved somewhat independently in a number of
fields that started historically at different times and in different domains, and
these fields have developed different emphases and even different jargons. Asa
result, learning from data is a diverse sub ject with many aliases in the scientific
literature. The main field dedicated to the subject is called machine learning,
a name that distinguishes it from human learning. We briefly mention two
other important fields that approach learning from data in their own ways.
Statistics shares the basic premise of learning from data, namely the use
of a set of observations to uncover an underlying process. In this case, the
process is a probability distribution and the observations are samples from that
distribution. Because statistics is a mathematical field, emphasis is given to
situations where most of the questions can be answered with rigorous proofs.
.AS aresult, statistics focuses on somewhat idealized models and analyzes them
I great detail. This is the main difference between the statistical approach

14

1. THE LEARNING PROBLEM 1.3. Is LEARNING FEASIBLE?

= 2y "
-l e

"alal="2

Figure 1.7: A visual learning problem. The first two rows show the training
examples (each input x is a 9-bit vector represented visually as a 3 x 3 black-
and-white array). The inputs in the first row have f(x) = —1, and the inputs
in the second row have f(x) = +1. Your task is to learn from this data set
what f is, then apply f to the test input at the bottom. Do you get —1
or +17

to learning and how we approach the subject here. We make less restrictive
assumptions and deal with more general models than in statistics. Therefore,
we end up with weaker results that are nonetheless broadly applicable.

Data mining is a practical field that focuses on finding patterns, correla-
tions, or anomalies in large relational databases. For example, we could be
looking at medical records of patients and trying to detect a cause-effect re-
lationship between a particular drug and long-term effects. We could also be
looking at credit card spending patterns and trying to detect potential fraud.
Technically, data mining is the same as learning from data, with more empha-
sis on data analysis than on prediction. Because databases are usually huge,
computational issues are often critical in data mining. Recommender systems,
which were illustrated in Section 1.1 with the movie rating example, are alsc
considered part of data mining.

1.3 Is Learning Feasible?

The target function f is the object of learning. The most important assertion

about the target function is that it is unknown. We really mean unknown.
This raises a natural question. How could a limited data set reveal enough

information to pin down the entire target function? Figure 1.7 illustrates this

15

1. THE LEARNING PROBLEM 1.3. Is LEARNING FEASIBLE?

difficulty. A simple learning task with 6 training examples of a +1 target
function is shown. Try to learn what the function is then apply it to the test
input given. Do you get —1 or +17 Now, show the problem to your friends
and see if they get the same answer.

The chances are the answers were not unanimous, and for good reason.
There is simply more than one function that fits the 6 training examples, and
some of these functions have a value of —1 on the test point and others have a
value of +1. For instance, if the true f is +1 when the pattern is symmetric,
the value for the test point would be +1. If the true f is +1 when the top left
square of the pattern is white, the value for the test point would be —1. Both
functions agree with all the examples in the data set, so there isn’t enough
information to tell us which would be the correct answer.

This does not bode well for the feasibility of learning. To make matters
worse, we will now see that the difficulty we experienced in this simple problem
is the rule, not the exception.

1.3.1 Outside the Data Set

When we get the training data D, e.g., the first two rows of Figure 1.7, we
know the value of f on all the points in D. This doesn’t mean that we have
learned f, since it doesn’t guarantee that we know anything about f outside
of D. We know what we have already seen, but that’s not learning. That’s
memorizing.

Does the data set D tell us anything outside of D that we didn’t know
before? If the answer is yes, then we have learned something. If the answer is
no, we can conclude that learning is not feasible.

Since we maintain that f is an unknown function, we can prove that f
remains unknown outside of D. Instead of going through a formal proof for
the general case, we will illustrate the idea in a concrete case. Consider a
Boolean target function over a three-dimensional input space X = {0,1}3.
We are given a data set D of five examples represented in the table below. We
denote the binary output by o/e for visual clarity,

where y,, = f(xn) for n = 1,2,3,4,5. The advantage of this simple Boolean
case is that we can enumerate the entire input space (since there are only 23 = 8§
distinct input vectors), and we can enumerate the set of all possible target
functions (since f is a Boolean function on 3 Boolean inputs, and there are
only 22° = 256 distinct Boolean functions on 3 Boolean inputs).

16

1. Tue LEARNING PROBLEM 1.3. Is LEARNING FEASIBLE?

Let us look at the problem of learning f. Since f is unknown except
“inside D, any function that agrees with D could conceivably be f. The table
below shows all such functions fq,---, fs. It also shows the data set D (in
blue) and what the final hypothesis g may look like.

x
000
001
010
011
100
101
110
111

)
foi
Py
=
=
&
ey
=

9

® O & & O |

)) V| @ O e & O
0O O O|(®@ O e @ O
e O O|® O e @ O
C @€ O|(e O & @ O
® @ O(® O @ ® O
C O e(® O @& @ O
e O e(®@ O @& & O
O ®© e|®@ O e & O
® © ©¢(® O o & O

The final hypothesis g is chosen based on the five examples in D. The table
shows the case where g is chosen to match f on these examples.

If we remain true to the notion of unknown target, we cannot exclude any
of fi,---, fs from being the true f. Now, we have a dilemma. The whole
purpose of learning f is to be able to predict the value of f on points that we
haven't seen before. The quality of the learning will be determined by how
close our prediction is to the true value. Regardless of what g predicts on
the three points we haven’t seen before (those outside of D, denoted by red
question marks), it can agree or disagree with the target, depending on which
of f1,--+, fs turns out to be the true target. It is easy to verify that any 3
bits that replace the red question marks are as good as any other 3 bits.

Exercise 1.7

For each of the following learning scenarios in the above problem, evaluate
the performance of g on the three points in X’ outside D. To measure the
performance, compute how many of the 8 possible target functions agree
with g on all three points, on two of them, on one of them, and on none
of them.

(a) H has only two hypotheses, one that always returns ‘e’ and one that
always returns ‘o’. The learning algorithm picks the hypothesis that
matches the data set the most.

(b) The same H, but the learning algorithm now picks the hypothesis
that matches the data set the /east.

(c) H = {XOR} (only one hypothesis which is always picked), where
XOR is defined by XOR(x) = e if the number of 1's in x is odd and
XOR(x) = o if the number is even.

(d) H contains all possible hypotheses (all Boolean functions on'three,
variables), and the learning algorithm picks the hypothesis that agrees
with all training examples, but otherwise disagrees the most with the
XOR.

17

1. THE LEARNING PrROBLEM 1.3. Is Leanning FEasaLe?

SAMPLE
eo0co0000e

v = fraction of red marbles

‘:_:,.--,373-:-:':?

1t = probability of red marbles

Figure 1.8: A random ssmple is picked from a bin of red and green marbles
The probability u of red marbles in the bin is unkoown, What does the
fraction 1+ of red marbles in the sample tell us about p?

It doesn't matter what the algorithm does or what hypothesis set H is used.
Whether H has a hypothesis that perfectly agrees with D (as depicted in the
table) or not, and whether the learning algorithm picks that hypothesis or
picks another one that disagrees with T (different green bits), it makes no
difference whatsoever as far as the performance outside of D is concerned. Yet
the performance outside D is all that matters in learning!

This dilemma is not restricted to Boolean functions, but extends to the
general learning problem. As long as f is an unknown function, knowing D
cannot exclude any pattern of values for f outside of D. Therefore, the pre-
dictions of g outside of D are meaningless.

Does this mean that learning from data is doomed? If so, this will be a
very short book (). Fortunately, learning is alive and well, and we will see
why. We won't have to change our basic assumption to do that. The target
function will continue to be unknown, and we still mean unknown.

1.3.2 Probability to the Rescue

We will show that we can indeed infer something outside D using only P, bul
in a probabilistic way, What we infer may nat be much compared to learning
a full target function, but it will establish the principle that we can reach
outside D. Once we establish that, we will take it to the general learning
problem and pin down what we can and cannot learn.

Let’s take the simplest case of picking a sample, and see when we can say
something about the objects outside the sample.. Consider a bin that contains
red and green marbles, possibly infinitely many. The proportion of red and
green marbles in the bin is such that if we pick a marble at random. the
probability that it will be red is o and the probability that it will be green
i8 1 — p, We assume that the value of pis unknown to us

15

1. TuE LEarNinG PROBLEM 1.3. Is LearniNg Frasmue?

We pick a random sample of N independent marbles (with replacement)
from this bin, and observe the fraction » of red marbles within the sample
(Figure 1.8). What does the value of ¢ tell us about the value of u?

One answer is that regardless of the colors of the N marbles that we picked,
we still don't know the color of any marble that we didn’t pick, We can get
mostly green marbles in the sample while the bin has mostly red marbles.
Although this is certainly possible, it is by no means probable.

Exercise 1.8
If i = 0.9, what is the probability that a sample of 10 marbles will have

v < 017 [Hints: 1. Use binomial distribution. 2. The answer is a very
small number.|

The situation is similar to taking a poll. A random sample from a population
tends to agree with the views of the population at large. The probability
distribution of the random variable v in terms of the parameter p is well
anderstood, and when the sample size is big, v tends to be close to .

To quantify the relationship between » and p, we use a simple bound called
the Hoeffding Fneguality. It states that for any sample size N,

02N

Pllw—p| =€ < 2 for any ¢ = . (1.4)

Here, P|-| denotes the probability of an event, in this case with respect to
the random sample we pick, and € is any positive value we choose. Putting
Inequality (1.4) in words, it says that as the sample size N grows, it becomes
exponentially unlikely that ¢ will deviate from g by more than our ‘tolerance’ e,

The only quantity that is random in (1.4) is » which depends on the random
sample. By contrast, i is not random. It is just a constant, albeit unknown to
us. There is a subtle point here. The utility of (1.4) is to infer the value of y
using the value of 1, although it is p that affects v, not vice versa. However,
since the effect is that v tends to be close to g, we infer that p ‘tends’ to be
close to .

Although Pl — | = ¢| depends on p, as p appears in the argument and
also affects the distribution of v, we are able to bound the probability by 2e~ 2N
which does not depend on . Notice that only the size N of the sample affects
the bound, not the size of the bin. The bin can be large or small, finite or
infinite, and we still get the same bound when we use the same sample size.

Exercise 1.9

If p = 0.4, use the Hoeffding Inequality to bnund thﬂ pmbuhiliw that a
_sample.of 10. marbles will have v < 0.1 and compare the answer to the

previous exercise,

If we choose ¢ to be very small in order to make v a good approximation of g,
we need a larger sample size N to make the RHS of Inequality (1. 4) small. We

19

1. The LEarNinG PROBLEM 1.3. Is Leanning FEAsIBLET

can then assert that it is likely that ¢ will indeed be a good approximation of 1.
Although this assertion does not give us the exact value of ju, and doesn’t even
guarantee that the approximate value holds, knowing that we are within e
of ;¢ most of the time is a significant improvement over not knowing anything
at all.

The fact that the sample was randomly selected from the bin is the reasou
we are able to make any kind of statement about g being close to . [If the
sample was not randomly selected but picked in a particular way, we would
lose the benefit of the probabilistic analysis and we would again be in the dark
outside of the sample.

How does the bin model relate to the learning problem? It seems that the
unknown here was just the value of ¢ while the unknown in learning is an entire
function f: A —+ Y. The two situations can be connected. Take any single
hypothesis h € H and compare it to f on each point x € X. If h(x) = f(x),
color the point x green. If A(x) # f(x), color the point x red. The color
that each point gets is not known to us, since f is unknown. However, if we
pick x at random according to some probability distribution £ over the input
space X', we know that x will be red with some probability, eall it g, and green
with probability 1 — p. Regardless of the value of . the space X' now behaves
like the bin in Figure 1.5,

The training examples play the role of & sample from the hin. [If the
inputs x;,+-+ . %y in D are picked independently according to P, we will get
a random sample of red (h(x,) # f(x,)) and green (hix,) = fl(x,)) points,
Each point will be red with probability g and green with probability 1— jt. The
color of each point will be known 1o us since both h{xy) and f(x,) are known
for n = 1,--+ | N (the function h is our hypothesis so we can evaluate it on
any point, and f(x,) = y, is given to us for all points in the data set D). The
learning problem is now reduced to a bin problem, under the assumption that
the inputs in D are picked independently according to some distribution
on X, Any P will translate to some g in the equivalent bin. Since fe is
allowed to be unknown, P can be unknown to us as well. Figure 1.9 adds this
probabilistic component to the basic learning set up depicted in Figure 1.2,

With this equivalence, the Hoeffding Inequality can be applied to the learn-
ing problem, allowing us to make a prediction outside of D, Using v to pre-
dict pt tells us something about £, although it doesn’t tell ns what f is. What p
tells us is the error rate h makes in approximating f. If v happens ta be close
to zero, we can predict that b will approximate f well over the entire input
space. If not, we are out of luck.

Unfortunately, we have no control over # in our current situation, since v
is based on a particular hypothesis h. In real learning, we explore an entire
bypothesis set H. looking for some h € H that has a small error rate. I we
have only one hypothesis to begin with, we are not really learning, but rather
verifying' whether that particular hypothesis is good or bad. Let us see if wo
can extend the bin equivalence to the case where we have multiple lypotheses
in arder to capture real learning.

20

1. THe LEarNinG PrOBLEM 1.3, Is LeanninG FrasisLe?

UNKNOWN TARGET FUNCTION

f: =)y
UNKNOWN
INPUT DISTRIBUTION
] P(x)
TRAINING EXAMPLES ‘/J l
(e) (Xasmia)es oo [Xa pn) X0 X200 Xy

gix) = f(x)
LEARNING FINAL
ALGORITHM HYPOTHESIS
A i

HYPOTHESIS SET
H

Figure 1.9: Probability added to the basic learning setup

To do that, we start by introducing more descriptive names for the dif-
ferent components that we will use. The error rate within the sample, which
corresponds to ¥ in the bin model, will be called the in-sample ervor,

By, (h) = (fraction of D where [and h disagree)

N
= =Y [hixa) # fixa],
n=]

where [statement] = 1 if the statement is true, and = 0 if the statement is
false. We have made explicit the dependency of Ej, on the particular i that
we are considering. In the same way, we define the out-of-sample error

Eum”f] =]F[lel i f[][:l.'.

which corresponds to p in the bin model. The probability is based on the
distribution P over X which is used to sample the data points x.

2

=

1. Tue Leanning PROBLEM 1.3, Is LEanninG FEASIRLE?

hiy by iy
Eulﬁ. {'ir'l | -Enul (hz) E‘nut ”-l'M }

so0ecOORRe SS08300080 LIil 111 L]
E,,[hl] Elu[hl] Ehag)

Figure 1.10: Multiple bins depiet the learning problem with M hypotheses

Substituting the new notation Ky, for v and E,, for p, the Hoeffding
Inequality (1.4) can be rewritten as

Pl Eia(h] = Eoue(h)] > €] < 926N for any ¢ > 0, (1.5

where N is the number of training examples. The in-sample error Ej,. just
like v, is a random variable that depends on the sample. The out-of-sample
error Euue, just like g, is unknown but not random.

Let us consider an entire hypothesis set H instead of just one hypothesis fi,
and assume for the moment that H has a finite number of hypotheses

H={h, ko hu}

We can construct a bin equivalent in this case hy having M bins as shown in
Figure 1.10. Each bin still represents the input space X, with the red marbles
in the mth bin corresponding to the points x € X where Fen(x) # f(x). The
probability of red marbles in the mth bin is E, (k) and the fraction of
red marbles in the mth sample is Fy,(hy,), for m = 1,--+ | M. Although the
Hoeffding Inequality (1.5) still applies to each bin individually, the situation
becomes more complicated when we consider all the bins simult aneonsly, Why
is that? The inequality stated that

P :.i-hlirl”-'] - lﬂli1||||I':--'I-'|| = ll ":_: ._!r,-;zr-.\' foor any e = {,

where the hypothesis h is fired before you generate the data set, and the
probability is with respect to random data sets D: we emphasize that the
assumption “h Is fixed before you generate the data set” is critical to the
validity of this bound. If vou are allowed to change i after you generate the
data set, the assumptions that are needed to prove the Hoeffding Inequality
no longer hold. With multiple hypotheses in H, the learning algorithm picls

=
4=

1. THE LEearnsinG PROBLEM 1.3, Is LEarNmNG FrasinLe?

the final hypothesis g based on D, i.e. after generating the data set. The
statement we would like to make is not

Lrﬁn:.g' :ir|{h'::|l:| = -E‘ullr”r.l:u:ll = 'I| 15 small”
(for any particular, fixed h,, € H). but rather
"Ehll.Em{fa’:' Eouclg) > f] is small” for the final hvpothesis g,

The hypothesis g is not fired ahead of time before generating the data, becanse
which hypothesis is selected to be ¢ depends on the data. So, we cannot just
plug in g for A in the Hoeffding inequality, The next exercise considers a simple
coin experiment that further illustrates the difference between a fixed h and
the final hypothesis g selected by the learning algorithm.

Exercise 1.10

Here is an experiment that illustrates the difference between a single bin
and multiple bins. Run a computer simulation for flipping 1,000 fair coins.
Flip each coin independently 1() times. Let's focus on 3 coins as follows:
ry 15 the first coin flipped; crang is 2 coin you choose at random; Guin i!‘l‘h!-
coin that had the minimum frequency of heads (pick the earlier one in case
of a tie] Let 11, Vgoa and 1, be the fraction of heads you obtain for the
respective three coins.

(a) What is u for the three coins selected?

{b) Repeat this entire experiment a large number of times (e.g., 100, 000
runs of the entire experiment) to get several instances of ¥y Frand
and v and plot the histograms of the distributions of v, brans and
Vmin. Notice that which coins end up being crans and e may differ
from cne run to another.

(c) Using (b), plot estimates for P[|i— | > ¢] as a function of ¢, together
with the Hoeffding bound 2¢ 'Y (on the same graph).

(d) Which coins obey the Hoeffding bound, and which ones do not? Ex-
plain why.

(e} Relate part (d) to the multiple bins in Figure 1.10,

The way to get around this is to try to bound P{|Ei.(g) - E.utlg)| = € in
& way that does not depend on which g the learning algorithm picks. There
is a simple but crude way of doing that. Since g has to be one of the h;,'s
regariless of the algorithm and the sample, it is always true that

I Einlg) — Eowig)l =€ = | Einlfi) = Eoulba)l = 5
or |Einlha) — Equi(ha)| = ¢

or [Epnlha) — Eaulha)l = gt

23

1. THE LEARNING PROBLEM 1.3. Is LEARNING FEASIBLE?

where B) = B, means that event B, implies event B;. Although the events
on the RHS cover a lot more than the LHS, the RHS has the property we want;
the hypotheses h,, are fixed. We now apply two basic rules in probability;

if By = BQ, then P [Bl] <]P)[BQ},
and, if By, By, - - -, By are any events, then
]P[Bl or B; or --- or BM] < P[Bl] +]P)[BQ] + - +P[BM]

The second rule is known as the union bound. Putting the two rules together,
we get

P[|Ein(9) = Eout(9)l > €] < Pl |Ein(h1) — Eouc(h)] > €
or ’Ein(hg) — Eout(hQ)‘ > €

or |Ein(har) — Eout(har)] > €]

M
< Z PHEin(hm) - Eout(hm)| > 6] :

m=1

Applying the Hoeffding Inequality (1.5) to the M terms one at a time, we can
bound each term in the sum by 2e=2¢"N Substituting, we get

P[|Ein(g) — Eous(g)] > €] < 2Me=2N (1.6)

Mathematically, this is a ‘uniform’ version of (1.5). We are trying to simul-
taneously approximate all Fou(h,y,)’s by the corresponding Ei, (h,,)’s. This
allows the learning algorithm to choose any hypothesis based on F;, and ex-
pect that the corresponding E,,; will uniformly follow suit, regardless of which
hypothesis is chosen.

The downside for uniform estimates is that the probability bound 2Me—2¢"N
is a factor of M looser than the bound for a single hypothesis, and will only
be meaningful if M is finite. We will improve on that in Chapter 2.

1.3.3 Feasibility of Learning

We have introduced two apparently conflicting arguments about the feasibility
of learning. One argument says that we cannot learn anything outside of D,
and the other says that we can. We would like to reconcile these two arguments
and pinpoint the sense in which learning is feasible:

1. Let us reconcile the two arguments. The question of whether D tells us
anything outside of D that we didn’t know before has two different answers.
If we insist on a deterministic answer, which means that D tells us something
certain about f outside of D, then the answer is no. If we accept a probabilistic
answer, which means that D tells us something likely about f outside of D,
then the answer is yes.

24

1. THE LEARNING PROBLEM 1.3. Is LEARNING FEASIBLE?

Exercise 1.11
We are given a data set D of 25 training examples from an unknown target
function f: X — Y, where X =R and Y = {—1,41}. To learn f, we use
a simple hypothesis set H = {hi1, ha} where h; is the constant +1 function
and hg is the constant —1.
We consider two learning algorithms, S (smart) and C (crazy). S chooses
the hypothesis that agrees the most with D and C chooses the other hy-
pothesis deliberately. Let us see how these algorithms perform out of sam-
ple from the deterministic and probabilistic points of view. Assume in
the probabilistic view that there is a probability distribution on X', and let
Plf(x) = +1] =p.

(a) Can S produce a hypothesis that is guaranteed to perform better than

random on any point outside D7

(b) Assume for the rest of the exercise that all the examples in D have
yn = +1. Is it possible that the hypothesis that C produces turns out
to be better than the hypothesis that S produces?

(c) if p = 0.9, what is the probability that S will produce. a better hy-
pothesis than C?

(d) 1s there any value of p for which it is more likely than not that C will
produce a better hypothesis than 5?7

By adopting the probabilistic view, we get a positive answer to the feasibility
question without paying too much of a price. The only assumption we make
in the probabilistic framework is that the examples in D are generated inde-
pendently. We don’t insist on using any particular probability distribution,
or even on knowing what distribution is used. However, whatever distribu-
tion we use for generating the examples, we must also use when we evaluate
how well g approximates f (Figure 1.9). That’s what makes the Hoeffding
Inequality applicable. Of course this ideal situation may not always happen
in practice, and some variations of it have been explored in the literature.

2. Let us pin down what we mean by the feasibility of learning. Learning pro-
duces a hypothesis g to approximate the unknown target function f. Iflearning
is successful, then ¢ should approximate f well, which means Fout (9) = 0.
However, this is not what we get from the probabilistic analysis. What we
get instead is Fou(9) =~ Ein(g). We still have to make Ein(g) = 0 in order to
conclude that Eou5(g) = 0.

We cannot guarantee that we will find a hypothesis that achieves Fiy(g) =~ 0,
but at least we will know if we find it. Remember that oy (g) is an unknown
quantity, since f is unknown, but Ei,(g) is a quantity that we can evaluate.
We have thus traded the condition E,y:(g) = 0, one that we cannot ascertain,
for the condition Ei,(g) ~ 0, which we can ascertain. What enabled this is
the Hoeffding Inequality (1.6):

P[|Ein(g) — Eou(g)] > ¢ < 2Me 2N

25

1. THE LEARNING PROBLEM 1.3. Is LEARNING FEASIBLE?

. that assures us that Eou(g) & Ein(g) so we can use E;, as a proxy for Foy.

Exercise 1.12
A friend comes to you with a learning problem. She says the target func-
tion f is completely unknown, but she has 4,000 data points. She is
willing to pay you to solve her problem and produce for her a g which
approximates f. What is the best that you can promise her among the
following:

(a) After learning you will provide her with a g that you will guarantee

approximates f well out of sample.

(b) After learning you will provide her with a g, and with high probability
the g which you produce will approximate f well out of sample.

(c) One of two things will happen.
(i) You will produce a hypothesis g;
(i) You will declare that you failed.

If you do return a hypothesis ¢, then with high probability the g which
you produce will approximate f well out of sample.

One should note that there are cases where we won’t insist that Ein(g) =~ 0.
Financial forecasting is an example where market unpredictability makes it
impossible to get a forecast that has anywhere near zero error. All we hope
for is a forecast that gets it right more often than not. If we get that, our
bets will win in the long run. This means that a hypothesis that has E,(g)
somewhat below 0.5 will work, provided of course that Eoui(g) is close enough
to Ein (g)

The feasibility of learning is thus split into two questions:

L. Can we make sure that E,.(g) is close enough to Ei,(g)?

2. Can we make Ei,(g) small enough?

The Hoeffding Inequality (1.6) addresses the first question only. The second
question is answered after we run the learning algorithm on the actual data,
and see how small we can get E;, to be.

Breaking down the feasibility of learning into these two questions provides
further insight into the role that different components of the learning problem
play. One such insight has to do with the ‘complexity’ of these components.

The complexity of #. If the number of hypotheses M goes up, we run
more risk that Ein(g) will be a poor estimator of Eout(g) according to In-
equality (1.6). M can be thought of as a measure of the ‘complexity’ of the

26

1. THE LEARNING PROBLEM 1.4. ERROR AND NOISE

hypothesis set H that we use. If we want an affirmative answer to the first
question, we need to keep the complexity of H in check. However, if we want
an affirmative answer to the second question, we stand a better chance if H
is more complex, since g has to come from H. So, a more complex H gives us
more flexibility in finding some g that fits the data well, leading to small E, (g).
This tradeoff in the complexity of H is a major theme in learning theory that
we will study in detail in Chapter 2.

The complexity of f. Intuitively, a complex target function f should be
harder to learn than a simple f. Let us examine if this can be inferred from
the two questions above. A close look at Inequality (1.6) reveals that the
complexity of f does not affect how well Ei.(g) approximates Eou(g). If
we fix the hypothesis set and the number of training examples, the inequality
provides the same bound whether we are trying to learn a simple f (for instance
a constant function) or a complex f (for instance a highly nonlinear function).
However, this doesn’t mean that we can learn complex functions as easily as
we learn simple functions. Remember that (1.6) affects the first question only.
If the target function is complex, the second question comes into play since
the data from a complex f are harder to fit than the data from a simple f.
This means that we will get a worse value for Ei,(g) when f is complex. We
might try to get around that by making our hypothesis set more complex so
that we can fit the data better and get a lower Ein(g), but then Eoyt won’t be
as close to Ein per (1.6). Either way we look at it, a complex f is harder to
learn as we expected. In the extreme case, if f is too complex, we may not be
able to learn it at all.

Fortunately, most target functions in real life are not too complex; we can
learn them from a reasonable D using a reasonable H. This is obviously a
practical observation, not a mathematical statement. Even when we cannot
learn a particular f, we will at least be able to tell that we can’t. As long as
we make sure that the complexity of H gives us a good Hoeffding bound, our
success or failure in learning f can be determined by our success or failure in
fitting the training data.

1.4 Error and Noise

We close this chapter by revisiting two notions in the learning problem in order
to bring them closer to the real world. The first notion is what approximation
means when we say that our hypothesis approximates the target function
well. The second notion is about the nature of the target function. In many
situations, there is noise that makes the output of f not uniquely determined
by the input. What are the ramifications of having such a ‘noisy’ target on
the learning problem?

27

1. THE LEARNING PROBLEM 1.4. ERROR AND NOISE

1.4.1 Error Measures

Learning is not expected to replicate the target function perfectly. The final
hypothesis g is only an approximation of f. To quantify how well g approxi-
mates f, we need to define an error measure3 that quantifies how far we are
from the target.

The choice of an error measure affects the outcome of the learning process.
Different error measures may lead to different choices of the final hypothesis,
even if the target and the data are the same, since the value of a particular error
measure may be small while the value of another error measure in the same
situation is large. Therefore, which error measure we use has consequences
for what we learn. What are the criteria for choosing one error measure over
another? We address this question here.

First, let’s formalize this notion a bit. An error measure quantifies how
well each hypothesis / in the model approximates the target function f,

Error = E(h, f).

While E(h, f) is based on the entirety of h and f, it is almost universally de-
fined based on the errors on individual input points x. If we define a pointwise
error measure e(h(x), f(x)), the overall error will be the average value of this
pointwise error. So far, we have been working with the classification error
e(h(x), f(x)) = [A(x) # f(x)].

In an ideal world, E(h, f) should be user-specified. The same learning task
in different contexts may warrant the use of different error measures. One may
view E(h, f) as the ‘cost’ of using h when you should use f. This cost depends
on what A is used for, and cannot be dictated Just by our learning techniques.
Here is a case in point.

Example 1.1 (Fingerprint verification). Consider the problem of verifying
that a fingerprint belongs to a particular person. What is the appropriate
error measure?

== +1 vou

—1 intruder

The target function takes as input a fingerprint, and returns +1 if it belongs
to the right person, and —1 if it belongs to an intruder.

31 : S . .
This measure is also called an error function in the literature, and sometimes the error
1s referred to ag cost, objective, or risk.

28

1. THE LEARNING PROBLEM 1.4. ERROR AND NOISE

There are two types of error that our hypothesis A can make here. If the
¢orrect person is rejected (h = —1 but f = +1), it is called false reject, and if

an incorrect person is accepted (h = +1 but f = —1), it is called false accept.
f
+1 -1
+1 no error false accept
h .
—1 | false reject no error

How should the error measure be defined in this problem? If the right person
is accepted or an intruder is rejected, the error is clearly zero. We need to
specify the error values for a false accept and for a false reject. The right
values depend on the application.

Consider two potential clients of this fingerprint system. One is a super-
market who will use it at the checkout counter to verify that you are a member
of a discount program. The other is the CIA who will use it at the entrance
to a secure facility to verify that you are authorized to enter that facility.

For the supermarket, a false reject is costly because if a customer gets
wrongly rejected, she may be discouraged from patronizing the supermarket
in the future. All future revenue from this annoyed customer is lost. On the
other hand, the cost of a false accept is minor. You just gave away a discount
to someone who didn’t deserve it, and that person left their fingerprint in your
system — they must be bold indeed.

For the CIA, a false accept is a disaster. An unauthorized person will gain
access to a highly sensitive facility. This should be reflected in a much higher
cost for the false accept. False rejects, on the other hand, can be tolerated
since authorized persons are employees (rather than customers as with the
supermarket). The inconvenience of retrying when rejected is just part of the
job, and they must deal with it.

The costs of the different types of errors can be tabulated in a matrix. For
our examples, the matrices might look like:

f f
+1 =1 +1 -1
A +14{ 0 1 5 +1| 0 1000
-1]10 0 -11] 1 0
Supermarket CIA

These matrices should be used to weight the different types of errors when
we compute the total error. When the learning algorithm minimizes a cost-
weighted error measure, it automatically takes into consideration the utility
of the hypothesis that it will produce. In the supermarket and CIA scenarios,
this could lead to two completely different final hypotheses. a

The moral of this example is that the choice of the error measure depends
on how the system is going to be used, rather than on any inherent criterion

29

1. Tue LEanning Proauiem 1;&, Ennon ann Noise

UNKNOWN TARGET DISTRIBUTION
(target function [plus noise)

Ply | x)
UNENOWN
INPUT DISTRIBUTION
| Pix)

TRAINING EXAMPLES ‘j
P X1 Xy oo s NN

‘xil-.l.l't bo (€q, tra) oo o (X i)

X
ERROR
MEASURE
7 5
J/ T—wgix) = f(x)
LEARNING FINAL
ALGORITHM HYPOTHESIS
A g

i

HYPOTHESIS SET
H

Figure 1.11: The general (supervised) learning problem

that we can independently determine during the learning process. However,
this ideal choice may not be possible in practice for two reasons. One is
that the user may not provide an error specification, which is not uncommon.
The other is that the weighted cost may be a difficult objective function for
optimizers to work with. Therefore, we often look for other ways to define the
error measure, sometimes with purely practical or analytic considerations in
mind. We have already seen an example of this with the simple binary error
used in this chapter, and we will see other error measures in later chapters.

1.4.2 Noisy Targets

In many practical applications, the data we learn from are not generated by
& deterministic target function. Instead. they are generated in a noisy way
stich that the output is not uniquely determined by the input. For instance,
in the credit-card example we presented in Section 1.1, two customers may
have identical salaries, outst anding loans, ete., but end up with different credit
behavior. Therefore, the credit ‘function’ is not really a deterministic function,

a0

1. THE LEARNING PROBLEM 1.4, Ernor AND NOISE

bt & noisy one.

This situation can be readily modeled within the same framework that we
have. Instead of y = f(x), we can take the output y to be a random variable
that is affected by, rather than determined by, the input x. Formally, we have
a target distribution P(y | x) instead of a target function y = fi(x). A data
point (x, y) is now generated by the joint distribution P(x.y) = Pix)P{y | x).

One can think of a noisy target as a deterministic target plus added noise.
If is real-valued for example, one can take the expected value of ¥ given x to
be the deterministic f(x), and consider y — f{x) as pure noise that is added
to f.

This view suggests that a deterministic target function can be considered
a special case of a noisy target, just with zero noise. Indeed, we can formally
express any function f as a distribution Ply | x] by choosing Py | x) to be
gero for all y except y = f(x). Therefore, there is no loss of generality if we
consider the target to be a distribution rather than a function. Figure 111
modifies the previous Figures 1.2 and 1.9 to illustrate the general learning
problem, covering both deterministic and noisy targets.

Exercise 1.13

Consider the bin model for a hypothesis /i that makes an error with prob-
ability j in approximating a deterministic target function J/ (both h and J
are binary functions). If we use the same h to approximate a noisy version
of f given by

A v = flx),
P =
(y | x} {IwJ. y £ 1(x).

(a) What is the probability of error that h makes in My}

(b) At what value of A will the performance of h be independent of
[Hint: The noisy target will look completely random, |

There is a difference between the role of Ply | x) and the role of P{x) in
the learning problem. While both distributions model probabilistic aspects
of x and y, the target distribution P(y | x) is what we are trying to learn,
while the input distribution P(x) only quantifies the relative importance of
the point x in gauging how well we have learned.

Our entire analysis of the feasibility of learning applies to noisy target
functions as well. Intuitively, this is because the Hoeffding Inequality (1.6)
applies to an arbitrary, unknown target function. Assume we randomly picked
all the y's aceording to the distribution Ply | x) over the entire input space A"
This realization of P(y | x) is effectively a target function. Therefore, the
inequality will be valid no matter which particular random realization the
‘target funetion” happens to be.

This does not mean that learning a noisy target is as easy as learning a
deterministic one. Remember the two questions of learning? With the same
learning model, E, may be as close to Ej, in the noisy case s it is in the

a1

1. THE LEARNING PROBLEM 1.4. ERROR AND NOISE

deterministic case, but E;, itself will likely be worse in the noisy case since it
is hard to fit the noise.

In Chapter 2, where we prove a stronger version of (1.6), we will assume
the target to be a probability distribution P(y | x), thus covering the general
case.

32

1. THE LEARNING PROBLEM 1.5. PROBLEMS

1.5 Problems

Problem 1.1 We have 2 opaque bags, each containing 2 balls. One bag
has 2 black balls and the other has a black and a white ball. You pick a bag
at random and then pick one of the balls in that bag at random. When you
look at the ball it is black. You now pick the second ball from that same bag.
What is the probability that this ball is also black? [Hint: Use Bayes’ Theorem:
P[A and B] = P[A| B|P [B] =P[B | Al P[A]]

Problem 1.2 Consider the perceptron in two dimensions: h(x) =
sign(w™x) where w = [wo, w1, w2]" and x = [1,71,z2]". Technically, x has
three coordinates, but we call this perceptron two-dimensional because the first
coordinate is fixed at 1.

(a) Show that the regions on the plane where h(x) = +1 and h(x) = —1 are
separated by a line. If we express this line by the equation z2 = az1 + b,
what are the slope a and intercept b in terms of wo, w1, w2 ?

(b) Draw a picture for the cases w = [1, 2,3]" and w = —[1,2,3]".

In more than two dimensions, the +1 and —1 regions are separated by a hy-
perplane, the generalization of a line.

Problem 1.3 Prove that the PLA eventually converges to a linear
separator for separable data. The following steps will guide you through the
proof. Let w* be an optimal set of weights (one which separates the data).
The essential idea in this proof is to show that the PLA weights w(t) get “more
aligned” with w* with every iteration. For simplicity, assume that w(0) =0.

(a) Let p = mini<n<n Yn(W* " Xn). Show that p > 0.

(b) Show that w™(t)w* > w™(t—1)w"+p, and conclude that w”™ (1)w™ > tp.
[Hint: Use induction.]

(c) Show that [[w(t)[|* < f[w(t — DI + [x(t = DI

[Hint: y(t — 1) - (w"(t — L)x(t — 1)) < 0 because x(t — 1) was misclas-
sified by w(t — 1).]

(d) Show by induction that lw(t)]|* < tR?, where R = maxi<a<n 1%l

(continued on next page)

33

1. THE LEARNING PROBLEM 1.5. PROBLEMS

(e) Using (b) and (d), show that

wh(t) . p
wo > Vi =,
lw @l R
and hence prove that
2 *)12
< B
P
g W (Dw” ?
[Hint: st eey < 1. Why?)
In practice, PLA converges more quickly than the bound i“;";—”Z suggests.

Nevertheless, because we do not know p in advance, we can't determine the
number of iterations to convergence, which does pose a problem if the data is
non-separable.

Problem 1.4 In Exercise 1.4, we use an artificial data set to study the
perceptron learning algorithm. This problem leads you to explore the algorithm
further with data sets of different sizes and dimensions.

(2) Generate a linearly separable data set of size 20 as indicated in Exer-
cise 1.4. Plot the examples {(xn,yn)} as well as the target function f on
a plane. Be sure to mark the examples from different classes differently,
and add labels to the axes of the plot.

(b) Run the perceptron learning algorithm on the data set above. Report the
number of updates that the algorithm takes before converging. Plot the
examples {(xn,yn)}, the target function f, and the final hypothesis g in
the same figure. Comment on whether f is close to g.

(c) Repeat everything in (b) with another randomly generated data set of
size 20. Compare your results with (b).

(d) Repeat everything in (b) with another randomly generated data set of
size 100. Compare your results with (b).

(e) Repeat everything in (b) with another randomly generated data set of
size 1,000. Compare your results with (b).

(f) Modify the algorithm such that it takes x, € R instead of R2. Ran-
domly generate a linearly separable data set of size 1,000 with x,, € R'°
and feed the data set to the algorithm. How many updates does the
algorithm take to converge?

() Repeat the algorithm on the same data set as (f) for 100 experiments. In
the iterations of each experiment, pick x(t) randomly instead of determin-
istically. Plot a histogram for the number of updates that the algorithm
takes to converge.

(h) Summarize your conclusions with respect to accuracy and running time
as a function of N and d.

34

1. THE LEARNING PROBLEM 1.5. PROBLEMS

Problem 1.5 We know that the perceptron learning algorithm
works like this: In each iteration, pick a random (x(t),y(t)) and compute
p(t) = wr(t)x(t). If y(t) - p(t) <0, update w by

w(t+1) +— w(t) +y(t) - x(t) ;

One may argue that this algorithm does not take the ‘closeness’ between p(t)
and y(t) into consideration. Let’s look at another perceptron learning algo-
rithm: In each iteration, pick a random (x(t),y(t)) and compute p(t). If
y(t) - p(t) <1, update w by

w(t+1) «— w(t) +n- () —p(t) -x(1) ,

where 7 is some constant. That is, if p(t) agrees with y(t) well (their product
is > 1), the algorithm does nothing. On the other hand, if p(t) is further
from y(t), the algorithm changes w(t) more. In this problem, you are asked to
implement this algorithm and check its performance.

(a) Generate a training data set of size 100 similar to that used in Exercise 1.4.
Generate a test data set of size 10,000 from the same process. To get g,
run the algorithm above with 7 = 100 on the training data set, until it
converges (no more possible updates) or a maximum of 1,000 updates
has been reached. Plot the training data set, the target function f, and
the final hypothesis g on the same figure. Report the error on the test
set.

(b) Use the data set in (a) and redo everything with n = 1.

(c) Use the data set in (a) and redo everything with 7 = 0.01.
(d) Use the data set in (a) and redo everything with 1 = 0.0001.
(e) Compare the results that you get from (a) to (d).

The algorithm above is a variant of the so-called Adaline (Adaptive Linear
Neuron) algorithm for perceptron learning.

Problem 1.6 Consider a sample of 10 marbles drawn independently from
a bin that holds red and green marbles. The probability of a red marble is p.
For £ = 0.05, = 0.5, and u = 0.8, compute the probability of getting no red
marbles (v = 0) in the following cases.

(a) We draw only one such sample. Compute the probability that v = 0.

(b) We draw 1,000 independent samples. Compute the probability that (at
least) one of the samples has v = 0.

(c) Repeat (b) for 1,000,000 independent samples.

35

1. THE LEARNING PROBLEM 1.5. PROBLEMS

Problem 1.7 A sample of heads and tails is created by tossing a coin
a number of times independently. Assume we have a number of coins that
generate different samples independently. For a given coin, let the probability
of heads (probability of error) be u1. The probability of obtaining k heads in N
tosses of this coin is given by the binomial distribution:

Plk| N,y = (27) pE = N

Remember that the training error v is %

(a) Assume the sample size (V) is 10. If all the coins have y = 0.05 compute
the probability that at least one coin will have v = 0 for the case of 1
coin, 1,000 coins, 1,000,000 coins. Repeat for ; = 0.8.

(b) For the case N = 6 and 2 coins with 1 = 0.5 for both coins, plot the
probability
Plmax v; — pi| > €]

for € in the range [0, 1] (the max is over coins). On the same plot show the
bound that would be obtained using the Hoeffding Inequality . Remember
that for a single coin, the Hoeffding bound is

Pllv — | > ¢ < 2¢7 2N

[Hint: Use P[A or B] = P[A] + P[B] — P[A and B] = P[A] + P[B] —
P[A]P[B], where the last equality follows by independence, to evaluate
Plmax.. .]]

Problem 1.8 The Hoeffding Inequality is one form of the law of Jarge
numbers. One of the simplest forms of that law is the Chebyshev Inequality,
which you will prove here.

(a) If ¢ is a non-negative random variable, prove that for any a > 0,
Pit > o] < E(t)/a.

(b) If uis any random variable with mean and variance o2, prove that for
any a >0, Pl(u—p)?>a]< %2 [Hint: Use (a)]

(c) Hui, - uy areiid random variables, each with mean y and variance o2,

and u = % Zﬁf:l Un, prove that for any o > 0,

2 o’
Pl(u — 2o < — .
((w—p)" 20 < =
Notice that the RHS of this Chebyshev Inequality goes down linearly in NV,
while the counterpart in Hoeffding's Inequality goes down exponentially. In
Problem 1.9, we develop an exponential bound using a similar approach.

36

1. THE LEARNING PROBLEM 1.5. PROBLEMS

Problem 1.9 In this problem, we derive a form of the law of large numbers
that has an exponential bound, called the Chernoff bound. We focus on the
simple case of flipping a fair coin, and use an approach similar to Problem 1.8.

(a) Let t be a (finite) random variable, & be a positive constant, and s be a
positive parameter. If T'(s) = E:(e), prove that

Pt >a] < e **T(s).

Hint: et is monotonically increasing in t.
y g

(b) Let u1,--- ,un be iid random variables, and let u = %ZnNzlun. If
U(s) = Eu, (e°*") (for any n), prove that

Plu>a] < (e_saU(s))N .
(c) Suppose Plun, = 0] = Plu, = 1] = 1 (fair coin). Evaluate U(s) as

a function of s, and minimize e~ **U(s) with respect to s for fixed o,
0<a<l.

(d) Conclude in (c) that, for 0 < ¢ < 3,
Plu > E(u) +¢] < 2 AN

where 8 =1+ (3 + €)log,(5 +€) + (3 —¢)logy(5 —€) and E(u) = i
Notice that this bound is exponentially decreasing in N.

Problem 1.10 Assume that X = {Xl,Xg, ooy XNy XN41y- .- ,XN+M}
and Y = {—1,+1} with an unknown target function f: X — Y. Since the
training data set D is (X1,y1), -, (Xn,yn), the off-training-set error of a
hypothesis h with respect to f can simply be defined as
L X
Eon(h, f) = 57 D [Mansm) # fanim)]-
m=1

(a) Say f(x) = -+1 for all x and

{ +1, forx=xyand kisoddand 1 <k< M+ N
h(x) = -
-1, otherwise

What is Eog(h, f)?

(b) We say that a target function f can ‘generate’ D in a noiseless setting
if yn = f(xn) for all (xn,yn) € D. For a fixed D of size N, how many
possible f: X —) can generate D in a noiseless setting?

(c) For a given hypothesis h and an integer k between 0 and M, how many
of those f in (b) satisfy Eog(h, f) = 257

(d) For a given hypothesis h, if all those f that generate D in a noiseless
setting are equally likely in probability, what is the expected off-training-
set error E¢{FEog (h, f)}7

(continued on next page)

37

1. THE LEARNING PROBLEM 1.5. PROBLEMS

(e) A deterministic algorithm A is defined as a procedure that takes D as
an input, and outputs a hypothesis h = A(D). Argue that for any two
deterministic algorithms A, and A,

E{ Eon(41(D). f)} = Br{ Bun(42(D), D)},

You have now proved that in a noiseless setting, for a fixed D, if all possible f
are equally likely, any two deterministic algorithms are the same in terms of the
expected off-training-set error. Similar results can be proved for more general
settings.

Problem 1.11 The matrix which tabulates the cost of various errors for
the CIA and Supermarket applications in Example 1.1 is called a risk or Joss
matrix.

For the two risk matrices in Example 1.1, explicitly write down the in-sample
error Ein that one should minimize to obtain g. This in-sample error should
weight the different types of errors based on the risk matrix. [Hint: Consider
yn = +1 and y, = —1 separately.]

Problem 1.12 This problem investigates how changing the error measure
can change the result of the learning process. You have N data points y; <
-+ <y~ and wish to estimate a ‘representative’ value,

(a) If your algorithm is to find the hypothesis A that minimizes the in-sample
sum of squared deviations,

N

Ein(h) =) (h—yn)?,

n=1

then show that your estimate will be the in-sample mean,

1 N
hmean = N Z Yn.
n=1

(b) If your algorithm is to find the hypothesis / that minimizes the in-sample
sum of absolute deviations,

N
Ein(h) =) |h = yal,
n=1

then show that your estimate will be the in-sample median Ameq, which
is any value for which half the data points are at most hmeq and half the
data points are at least Amed-

(¢) Suppose yy is perturbed to YN + €, where ¢ — 0o. So, the single data

point yx becomes an outlier. What happens to your two estimators Amean
and hmed?

38

Chapter 2

Training versus Testing

Before the final exam, a professor may hand out some practice problems and
solutions to the class. Although these problems are not the exact ones that
will appear on the exam, studying them will help you do better. They are the
‘training set’ in your learning.

If the professor’s goal is to help you do better in the exam, why not give
out the exam problems themselves? Well, nice try (). Doing well in the
exam is not the goal in and of itself. The goal is for you to learn the course
material. The exam is merely a way to gauge how well you have learned the
material. If the exam problems are known ahead of time, your performance
on them will no longer accurately gauge how well you have learned.

The same distinction between training and testing happens in learning from
data. In this chapter, we will develop a mathematical theory that characterizes
this distinction. We will also discuss the conceptual and practical implications
of the contrast between training and testing.

2.1 Theory of Generalization

The out-of-sample error Eqy measures how well our training on D has gener-
alized to data that we have not seen before. E,y is based on the performance
over the entire input space X. Intuitively, if we want to estimate the value
of Eoy; using a sample of data points, these points must be ‘fresh’ test points
that have not been used for training, similar to the questions on the final exam
that have not been used for practice.

The in-sample error Fi,, by contrast, is based on data points that have
been used for training. It expressly measures training performance, similar to
your performance on the practice problems that you got before the final exam.
Such performance has the benefit of looking at the solutions and adjusting
accordingly, and may not reflect the ultimate performance in a real test. We
began the analysis of in-sample error in Chapter 1, and we will extend this

39

2, TraiNiNG veERSUS TEsTING 2.1. THEORY OF GENERALIZATION

analysis to the general case in this chapter, We will also make the contrast
between a training set and a test set more precise,

A word of warning: this chapter is the heaviest in this book in terms of
mathematical abstraction. To make it easicr on the not-so-mathematically
inclined, we will tell you which part you can safely skip without ‘losing the
plot'. The mathematical results provide fundamental insights into learning
from data, and we will interpret these results in practical terms.

Generalization error. We have already discussed how the value of Ej,
does not always generalize to a similar value of E,,;. Generalization is a key
issue in learning. Oune can define the generalization error as the discrepancy
between Ey, and E,,.! The Hoeffding Inequality (1.6} provides a way to
characterize the generalization error with a probabilistic bound,

Pl Einlg) = Boulg)] > ¢] < 2Me 2N

for any € > 0. This can be rephrased as follows. Pick a tolerance level 8. for
example & = (1.05, and assert with probability at least 1 — & that

/ M
Em;l |:f_ﬂ = -Eiu'::y':' + 1 i,. |Tl £ = |:'2.-1:|

| 2N)

We refer to the type of inequality in (2.1) as a generalization bound because
it bounds E, in terms of E;. To see that the Hoeffding Inequality implies
this generalization bound, we rewrite (1.6) as follows: with probability at least
1 — 2Me-2Ne | Eouwt — Ein| < €, which implies B, < Ej +¢. We may now

a3

identify 4 = 2Me 2¥" from which ¢ = V a7 In 2 and (2.1) follows.

Notice that the other side of |E,u — Eiy| < ¢ also holds. that is, Eout =
Eiy — €. This is important for learning, but in a more subtle way. Not only
do we want to know that the hvpothesis 4 that we choose (say the one with
the best training error] will continue to do well out of sample (ie., F,, <
E;;, + €), but we also want to be sure that there is no other hypothesis i € H
whose E,y (k) is significantly better than E,,(g). In other words, we did the
best we could with our #. The E,(h) > Ey(h) — € direction of the bound
assures us that it is unlikely that any other hypothesis in H was unlucky on
the training set but is actually much better than the g we have chosen,

B

on M, the size of the hypothesis set H. If # is an infinite set, the bound goes
to infinity and becomes meaningless. Unfortunately. almost all interesting
learning models have infinite H. including the simple perceptron which we
discussed in Chapter 1.

[n order to study generalization in such models, we need to derive a coun-
terpart to (2.1) that deals with infinite H. We would like to replace M with

The error bound \/EL,,_ In 2 in (2.1), or ‘error bar’ if you will, depends

1 . PR s ;
Sotnetimes ‘generalization ervor’ is used as ancther padne for Egye, but not in this book.

40

2. TralNING vERsus TESTING 2.1, Tueory oF GENERALIEATION

something finite, so that the bound is meaningful. To do this, we notice that
the way we got the M factor in the first place was by taking the disjunction
of events:

| Ein(hy) — Eout(h1)| > € or
“ Bnlha) = Eontlha)| > € or

“|Em(har) — Er:uqu.hMJl =€, {22}

which is guaranteed to include the event “|Ey,(g) — Eoulg)| > € since g is al-
ways one of the hypotheses in H. We then over-estimated (he probability using
ihe union bound. Let By, be the (Bad) event that *| Eia(hm) = Eout(Am)| > €.
Then,

FiE] or B; or --- or B,l.;l = JF[E]] 4 F[Bg] e R PiBM].

If the events By, By, -, By are strongly
overlapping, the union bound becomes par-
ticularly loose as illustrated in the figure to
the right for an example with 3 hypotheses: 5, B
the arcas of different events correspond to
their probabilities. The union bound says
that the total area covered by By, B, or By
is smaller than the sum of the individual ar-
eas, which is true but is a gross overestimate
when the areas overlap heavily as in this ex-
ample, The events *|Eiy(hpn) — Eou (b)| = B
em =1, , M, are often strongly overlap-
ping. If by is very similar to fiz for instance,
the two events “|Eiq{h1) — Equi ()| = ¢ and 4| Einlha) — Eque(hg)]| = € are
likely to coincide for most data sets, In a typical learning model, many hy-
potheses are indeed very similar. If you take the perceptron model for instance,
as vou slowly vary the weight vector w, you get infinitely many hypotheses
that differ from each other only infinitesimally.

The mathematical theory of generalization hinges on this ohservation.
Onee we properly account for the overlaps of the different hypotheses, we
will be able to replace the number of hypotheses M in (2.1) by an effective
number which is finite even when M is infinite, and establish a more useful
condition under which E.y is elose to Ey.

2.1.1 Effective Number of Hypotheses

We now introduce the growth function, the guantity that will formalize the
effective number of hypotheses. The growth function is what will replace M

2. TramiNg vERSUS TesTING 2.1. Turory oF GENERALIZATION

in the generalization bound (2.1). It is a combinatorial quantity that cap-
tures how different the hypotheses in M are, and hence how much overlap the
different events in (2.2) have.

We will start by defining the growth function and studying its basic prop-
erties. Next, we will show how we can bound the value of the growth function.
Finally. we will show that we can replace M in the generalization bound with
the growth function. These three steps will vield the generalization bound that
we need, which applies to infinite . We will focus on binary target functions
for the purpose of this analysis, so each h € H maps X to {—1,+1}.

The definition of the growth function is based on the number of different
hypotheses that H can implement, but only over a finite sample of points
rather than over the entire input space X'. If h € H is applied to a finite sample
Xy 0o Xy € A we get an N-tuple h(x,),--- , h(xp) of £1's. Such an N-tuple
is called a dichotomy since it splits x;, - - -, x into two groups: those points for
which h is —1 and those for which h is +1. Each & € H generates a dichotomy
Of X+ ¢+ Xy, but two different 's may generate the same dichotomy if they
happen to give the same pattern of £1’s on this particular sample.

Definition 2.1. Let x;.--- .xy € X. The dichotomies generated by H om
these points arve defined by

Hixpoooxy) = { (hlx)--- hixx)) | he H]. (2.3)

One can think of the dichotomies H(x;, - , %) as a set of hypotheses just
like # is, except that the hypotheses are seen through the eves of N points
only. A larger H(x;, - ,xx) means H is more ‘diverse’ geNerating more
dichotomies on x;,+-+ ,xy. The growth function is based on the number of
dichotomies,

Definition 2.2. The growth function is defined for a hypothesis set H by

mulN)= max _ |[Hixy,---.xn),
Xy EA

Ky
where | - | denotes the cardinality (number of elements) of a sel.

In words, mgy(N) is the maximum number of dichotomies that can be Eel-
erated by H on any N points. To eompute my(N), we consider all possible
choices of N points x,--- ,xy from X and pick the one that gives us the
most dichotomies. Like M, mu(N) is a measure of the number of hypotheses
in H, except that a hypothesis is now considered on N points instead of the
entire X', For any H, since H(xy, -+ ,xn) C {—1,+1} (the set of all possible
dichotomies on any N points). the value of my(N) is at most [{—=1, +1}¥].
hence
my(N) <2V,

If H is capable of generat ing all possible dichotomies on x;,--- ,xy, then
?_f(xi.-' Xy) = {=1,+1}" and we say that H can shatter X, Xn. This
signifies that % is as diverse as can be on this particular sample.

42

’ 2. TramiNG vERSUS TESTING 2.1, THEORY OF (TENERALIZATION

| | |
® | [] o
‘ (o] L | b |
x L ! x o
—_—] L l I_ I |
(a) (b} (€

Figure 2.1: llustration of the growth function for a two-dimensional per-
coptron. The dichotomy of red versus hlue on the 3 colinear points in part
(a) cannot be generated by a perceptron, but all 8 dichotomies on the 3
points in part (b) can. By contrast, the dichotomy of red versus blue on
the 4 points in part () cannot be generated by a perceptron, At most 14
out of the possible 16 dichotomies on any 4 points can be generated.

Example 2.1. If X is a Euclidean plane and H is a two-dimensional percep-
tron, what are my(3) and my(4)? Figure 2.1(a) shows a dichotomy on 3 points
that the perceptron cannot generate, while Figure 2.1(b) shows another 3
points that the perceptron can shatter, generating all 2% — 8 dichotomies.
Because the definition of my(N) is based on the maximum number of di-
chotomies, my(3) = 8 in spite of the case in Figure 2.1(a).

In the case of 4 points, Figure 2.1(c) shows a dichotomy that the perceptron
cannot generate. One can verify that there are no 4 points that the perceptron
can shatter. The most a perceptron can do on any 4 points is 14 dichotomies
out of the possible 16, where the 2 missing dichotomies are as depicted in
Figure 2.1(c) with blue and red corresponding to —1, +1 or to +1, —1. Hence,
myl4) = 14 O

Let us now illustrate how to compute my(N) for some simple hypothesis
sets. These examples will confirm the intuition that mu(N) grows Easter
when the hypothesis set H becomes more complex. This is what we expect of
a quantity that is meant to replace M in the generalization bound (2.1).

Example 2.2. Let us find a formula for myx(N) in each of the following cases.

I. Positive rays: M consists of all hypotheses h: B — {—1,+1} of the form
hix) = sign(x — a), i.e., the hypotheses are defined in a one-dimensional
input space, and they return —1 to the left of some value a and +1 to
the right of a.

L
hir)=-1 T hiz)=+1
i
E o) Ty T LT E g

2. TrRANING vERSUS TESTING 21, Tueory OF GENERALIZATION

To compute my (N, we notice that given N points, the line is split by
the points into N + 1 regions. The dichotomy we get on the N points
is decided by which region contains the value a. As we vary a, we will
get N + 1 different dichotomies. Since this is the most we can get for
any N points, the growth function is

my(N)j=N+1

Naotice that if we picked N points where some of the points coincided
(which is allowed), we will get less than N + 1 dichotomies. This does
not affect the value of my{N) since it is defined based on the maximum
number of dichotomies.

. Positive intervals: H consists of all hypotheses in one dimension that

return +1 within some interval and —1 otherwise. Each hypothesis is
specified by the two end values of that interval,

filz) = —1 | hix) = +1 |,|,|.-|- 1

— MM ——O— O NN

Ty T Iy - TN

To compute my(N). we notice that given N points, the line is again
split by the points into N + 1 regions. The dichotomy we get is decided
by which two regions contain the end values of the interval, resulting

in ('"'r;") different dichotomies. If both end values [all in the same

region, the resulting hypothesis is the constant —1 regardless of which
region it is. Adding up these possibilities, we get

, N+1 Lo 1.
my(N) = (5) +1= EJ"'- ¢ Ez\- 1,
Notice that my(N) grows as the square of N, faster than the lin-
ear 1y (N} of the simpler’ positive ray case.

Conver sets: H consists of all hypotheses in two dimensions h: R —
{—=1,41} that are positive inside some convex set and negative elsewhere
{a set is convex if the line segment connecting any two points in the set
lies entirely within the set).

To compute m3(N) in this case, we need to choose the N points care-
fully. Per the next figure. choose N points on the perimeter of a circle.
Now eonsider any dichotomy on these points, assigning an arbitrary pat-
tern of £1's to the N points. If you connect the +1 points with a polygon,
the hypothesis made up of the closed interior of the polygon (which has
to be convex since its vertices are on the perimeter of a circle) agrees
with the dichotomy on all N points. For the dichotomies that have less
than three +1 points, the convex set will be a line segment, a point, or
an empty sot,

14

2. Traving vErsus TESTING 2.1. Tugory oF GENERALIZATION

This means that any dichotomy on these N points can be realized using a
convex hypothesis, so H manages to shatter these points and the growth
function has the maximum possible value

mu(N) =2V,

Notice that if the N points were chosen at random in the plane rather
than on the perimeter of a circle, many of the points would be ‘internal’
and we wouldn't be able to shatter all the points with convex hypotheses
as we did for the perimeter points. However, this doesn't matter as far
as iy (N is concerned, sinee it is defined based on the maximum (2N
in this case). a

It is not practical to try to compute my (N for every liypothesis set we use.
Fortunately. we don't have to. Since my(N) is meant to replace M in {2.1);
we can use an upper hound on my(N) instead of the exact value, and the
inequality in (2.1) will still hold. Getting a good bound on (N will prove
much easier than computing my(N) itself, thanks to the notion of a break
perint,

Definition 2.3. If no data sel of size k can be shattered by H, then k is said
to be o break point for H.

If k is a break point, then my(k) < 2%, Example 2.1 shows that k =4 isa
break point for two-dimensional perceptrons. In general, it is easier to find a
break point for H than to compute the full growth function for that H.

Exercise 2.1
By inspection, find a break point k for each hypott

(F there is one). Verity that mx(n) < 2" using the.

We now use the break point k to derive a bound on the growth function my(N)
for all values of N. For example, the fact that no 4 points can be shattered by

45

2. Tramne versus Testivg 2.1, TuEoRY OF (JENERALIZATION

the two-dimensional perceptron puts a significant, constraint on the number of
dichotomies that can be realized by the perceptron on 5 or more points. We
will exploit this idea to get a significant bound on my(N) in general,

2.1.2 Bounding the Growth Function

The most important fact about growth functions is that if the econdition
my(N) = 2" breaks at any point, we can bound my(N) for all values of N
by a simple polynomial based on this break point. The fact that the bound
is polynomial is crucial. Absent a break point (as is the case in the convex
hypothesis example), ma(N) = 2N for all N. If my(N) replaced M in Equa-

tion (2.1), the bound 4/ a7 In 22 on the generalization error would not go to

zero regardless of how many training examples N we have. However, if my (V)
can be bounded by a polynomial - any polyvnomial -, the generalization error
will go to zero as N — oo. This means that we will generalize well given a
sufficient number of examples.

Begin safe skip: If you trust our math, vou can skip
the following part without compromising the logical
sequence. A similar green box will tell you when to
rejoin.

To prove the polynomial bound, we will introduce a combinatorial quantity
that counts the maximum number of dichotomies given that there is a break
point, without having to assume any particular form of . This bound will
therefore apply to any H.

Definition 2.4. B(N. k) is the marimum number of dichotomies on N oty
such that no subset of size k of the N poinds can be shatlered by these di-
chotomies,

The definition of B(N, k) assumes a break point k&, then tries to find the
most dichotomies on N points withont imposing any further restrictions.
Since B(N, k) is defined as a maximum, it will serve as an upper bound for
any miy(N) that has a break point &

mu(N) < B(N.k) if kis a break point for #.
The notation B comes from ‘Binomial’ and the reason will become clear
shortly, To evaluate B(N, k), we start with the two boundary conditions

*zlﬂl‘ld h-r:

B(N,1)
B(1.k)

1
2 for k=1,

46

2. THAaNING VERSUS TESTING 2.1. TrEory OF GENERALIZATION

B(N.1) = 1 for all N since if no subset of size 1 can be shattered, then only
one dichotomy can be allowed. A second different dichotomy must differ on at
least one point and then that subset of size 1 would be shattered. B(1.k) =2
for k& > 1 since in this case there do not even exist subsets of size k; the
constraint is vacuously true and we have 2 possible dichotomies (+1 and —1)
on the one point.

We now assume N > 2 and k > 2 and try to develop a recursion. Consider
the B(N, k) dichotomies in definition 2.4, where no k points can be shattered.
We list these dichotomies in the following table.

| #ofrows|x Xz ... Xy-3 |XN
+1 +1 ... 1 +1
-1 41 ... +1 —1]
S] e H - . | :
+1 =1 ., -1 —1
-1 +1 ... -1 +1
N +1 -1 ... +1 [+
-1 -1 ... =1 +1
oy 8 g g 5 :
| 41 =1 .0 4+l +1
-1 -1 ... -1 +1
5a
=k +1 =1 ..: 41 | =1
-1 -1 .. +1 -1
i _L‘j H . ' : .
+1 -1 ... +1 1
-1 -1 ... -1 -1
where x;,:-- .xy in the table are labels for the N points of the dichotomy.
We have chosen a convenient order in which to list the dichotomies, as follows.
Consider the dichotomies on x;, -+ ,%xy_1. Some dichotomies on these N-1

points appear only once (with either +1 or —1 in the xy column, but not
both). We collect these dichotomies in the set S;. The remaining dichotomies
on the first N — 1 points appear twice, once with +1 and once with —1 in
the xx column, We collect these dichotomies in the set Sp which can be
divided into two equal parts, S7 and S5 (with +1 and —1in the xx colomn,
respectively). Let Sy have a rows, and let S and S; have [rows each. Since
the total number of rows in the table is B(N, k) by construction, we have

B (:Disic)t 2B 24

The total number of different dichotomies on the first N — 1 points is given
by o+ d; since S; and S5 are identical on these N — 1 points, their di-
chotomies are redundant. Since no subset of k of these first N — 1 points can

47

2. TRAINING VERSUS TESTING 2.1. THEORY OF GENERALIZATION

be shattered (since no k-subset of all N points can be shattered), we deduce
that

a+B<B(N—1,k) (2.5)
by definition of B. Further, no subset of size k — 1 of the first N — 1 points can
be shattered by the dichotomies in Si. If there existed such a subset, then
taking the corresponding set of dichotomies in S, and adding xy to the data
points yields a subset of size k that is shattered, which we know cannot exist
in this table by definition of B(N, k). Therefore,

B<B(N -1,k—1). (2.6)
Substituting the two Inequalities (2.5) and (2.6) into (2.4), we get
B(N,k) < B(N — 1,k) + B(N — 1,k — 1). (2.7)

We can use (2.7) to recursively compute a bound on B(N, k), as shown in the
following table.

k
1 2 3 4 5 6
11 2 2 2 2 2
2|1 3 4 4 4 4
311 4 7 8 8 8
N Ny
411 5 11
511 6
6|1 7

where the first row (N = 1) and the first column (k = 1) are the bound-
ary conditions that we already calculated. We can also use the recursion to
bound B(N, k) analytically.

Lemma 2.3 (Sauer’s Lemma).

B(N,k) < kz_:l (7)

=0

Proof. The statement is true whenever k = 1 or N = 1, by inspection. The
proof is by induction on N. Assume the statement is true for all N < N,
and all k. We need to prove the statement for N = N, + 1 and all k. Since
the statement is already true when k = 1 (for all values of N) by the initial
condition, we only need to worry about k > 2. By (2.7),

B(N, +1,k) < B(No, k) + B(No, k — 1).

48

2. TRAINING VERSUS TESTING 2.1. THEORY OF (GENERALIZATION

Applying the induction hypothesis to each term on the RHS, we get

k-1 k—2
N, N,
B(N, +1,k) < 2 °
(ot) ;(Z)+i=0<l>

-2 [(1)+ ()

B 1+H <N0+1> = <N0+1>
B Z i R i)
i=1 i=0
where the combinatorial identity (N":'l) = J\i" —+ 1.1101) has been used.

This identity can be proved by noticing that to calculate the number of ways

to pick i objects from N, +1 distinct objects, either the first object is included,
in (ﬁ 01) ways, or the first object is not included, in (1\2&,

thus proved the induction step, so the statement istrueforall N and k. W

) ways. We have

It turns out that B(N, k) in fact equals Zf:'ol (1:]) (see Problem 2.4), but
we only need the inequality of Lemma 2.3 to bound the growth function. For
a given break point &, the bound Zf:_ol (Jj
in the sum is polynomial (of degree i < k —1). Since B(N, k) is an upper
bound on any my (V) that has a break point k, we have proved

) is polynomial in N, as each term

ﬁﬂnd safe skip: Those who skipped are now rejoining

us. The next theorem states that any growth function
| my (N) with a break point is bounded by a polyno-
| mial.

Theorem 2.4. If my (k) < 2F for some value k, then

k=1
2.8
<3 () 28)
=0
for all N. The RHS is polynomial in N of degree k — 1.

The implication of Theorem 2.4 is that if 2 has a break point, we have
what we want to ensure good generalization; a polynomial bound on mz(N).

49

2. TRAINING VERSUS TESTING 2.1. THEORY OF GENERALIZATION

Exercise 2.2
(a) Verify the bound of Theorem 2.4 in the three cases of Example 2.2:

(i) Positive rays: H consists of all hypotheses in one dimension of
the form h(z) = sign(z — a).

(i) Positive intervals: H consists of all hypotheses in one dimension
that are positive within some interval and negative elsewhere.

(iii) Convex sets: H consists of all hypotheses in two dimensions that
are positive inside some convex set and negative elsewhere.

(Note: you can use the break points you found in Exercise 2.1.)

(b) Does there exist a hypothesis set for which my (N) = N + 2lV/2
(where | N/2] is the largest integer < N/2)?

2.1.3 The VC Dimension

Theorem 2.4 bounds the entire growth function in terms of any break point.
The smaller the break point, the better the bound. This leads us to the fol-
lowing definition of a single parameter that characterizes the growth function.

Definition 2.5. The Vapnik-Chervonenkis dimension of a hypothesis set H,
denoted by dvc(H) or simply dye, is the largest value of N for which may (N) =
2N, If my(N) =2V for all N, then dyo(H) = .

If dyc is the VC dimension of H, then k = dyc + 1 is a break point for my
since my(N) cannot equal 2% for any N > d,. by definition. It is easy to see
that no smaller break point exists since H can shatter dy points, hence it can
also shatter any subset of these points.

Exercise 2.3

Compute the VC dimension of # for the hypothesis sets in parts (M, (i),
(i) of Exercise 2.2(a).

Since k = dy¢ + 1 is a break point for msy, Theorem 2.4 can be rewritten in
terms of the VC dimension:

ma(N) < dz (7) . (2.9)

i=0

Therefore, the VC dimension is the order of the polynomial bound on my(N).
It is also the best we can do using this line of reasoning, because no smaller
break point than k = d,. + 1 exists. The form of the polynomial bound can
be further simplified to make the dependency on dy. more salient. We state a
useful form here, which can be proved by induction (Problem 2.5).

my(N) < Née 41, (2.10)

50

2. TRAINING VERSUS TESTING 2.1. THEORY OF (GENERALIZATION

~ Now that the growth function has been bounded in terms of the VC dimen-
sion, we have only one more step left in our analysis, which is to replace the
number of hypotheses M in the generalization bound (2.1) with the growth
function my(N). If we manage to do that, the VC dimension will play a
pivotal role in the generalization question. If we were to directly replace M
by my(N) in (2.1), we would get a bound of the form

? 1 2may (N
EoutSEin+ gﬁln—'}é—(_) .

Unless dyo(H) = 0o, we know that m4 (V) is bounded by a polynomial in N;
thus, Inmy (N) grows logarithmically in V regardless of the order of the poly-
nomial, and so it will be crushed by the % factor. Therefore, for any fixed
tolerance 4§, the bound on Eoy will be arbitrarily close to Ei, for sufficiently
large N.

Only if dye(H) = oo will this argument fail, as the growth function in this
case is exponential in N. For any finite value of dyc, the error bar will converge
to zero at a speed determined by dyc, since dyc is the order of the polynomial.
The smaller dy. is, the faster the convergence to zero.

Tt turns out that we cannot just replace M with mq(N) in the generaliza-
tion bound (2.1), but rather we need to make other adjustments as we will see
shortly. However, the general idea above is correct, and dye will still play the
role that we discussed here. One implication of this discussion is that there
is a division of models into two classes. The ‘good models’ have finite dvc,
and for sufficiently large N, Ei, will be close to Eoyt; for good models, the
in-sample performance generalizes to out of sample. The ‘bad models’ have
infinite dye. With a bad model, no matter how large the data set is, we cannot
make generalization conclusions from Eiy to Foy based on the VO analysis.?

Because of its significant role, it is worthwhile to try to gain some insight
about the VC dimension before we proceed to the formalities of deriving the
new generalization bound. One way to gain insight about dyc is to try to
compute it for learning models that we are familiar with. Perceptrons are one
case where we can compute dyc exactly. This is done in two steps. First,
we show that dc is at least a certain value, then we show that it is at most
the same value. There is a logical difference in arguing that dyc 1s at least a
certain value, as opposed to at most a certain value. This is because

dve > N < there exists D of size N such that H shatters D,
hence we have different conclusions in the following cases.

1. There is a set of N points that can be shattered by H. In this case, we
can conclude that dye > N. '

21n some cases with infinite dyvc, such as the convex sets that we discussed, alterna.tive
analysis based on an ‘average’ growth function can establish good generalization behavior.

51

2. TRAINING VERSUS TESTING 2.1. THEORY OF GENERALIZATION

2. Any set of N points can be shattered by 7{. In this case, we have more
than enough information to conclude that d,c > N.

3. There is a set of N points that cannot be shattered by H. Based only on
this information, we cannot conclude anything about the value of dy..

4. No set of N points can be shattered by #. In this case, we can conclude
that dye < N.

Exercise 2.4

Consider the input space X = {1} x R? (including the constant coordinate
zo = 1). Show that the VC dimension of the perceptron (with d + 1
parameters, counting wo) is exactly d+1 by showing that it is at least d + 1
and at most d + 1, as follows.

{(a) To show that dvc > d+1, find d+ 1 points in X that the perceptron
can shatter. [Hint: Construct a nonsingular (d + 1) x (d + 1) matrix
whose rows represent the d + 1 points, then use the nonsingularity to
argue that the perceptron can shatter these points.]

(b) To show that dvc < d + 1, show that no set of d + 2 points in X
can be shattered by the perceptron. [Hint: Represent each point
in X as a vector of length d + 1, then use the fact that any d + 2
vectors of length d + 1 have to be linearly dependent. This means
that some vector is a linear combination of all the other vectors.
Now, if you choose the class of these other vectors carefully, then the
classification of the dependent vector will be dictated. Conclude that
there is some dichotomy that cannot be implemented, and therefore
that for N > d+ 2, my(N) < 2V]

The VC dimension of a d-dimensional perceptron® is indeed d + 1. This is
consistent with Figure 2.1 for the case d = 2, which shows a VC dimension
of 3. The perceptron case provides a nice intuition about the VC dimension,
since d + 1 is also the number of parameters in this model. One can view
the VC dimension as measuring the ‘effective’ number of parameters. The
more parameters a model has, the more diverse its hypothesis set is, which
is reflected in a larger value of the growth function my (N). In the case
of perceptrons, the effective parameters correspond to explicit parameters in
the model, namely wg, w1, - ,wy. In other models, the effective parameters
may be less obvious or implicit. The VC dimension measures these effective
parameters or ‘degrees of freedom’ that enable the model to express a diverse
set of hypotheses.

Diversity is not necessarily a good thing in the context of generalization.
For example, the set of all possible hypotheses is as diverse as can be, so
mu(N) =2V for all N and dye(H) = oco. In this case, no generalization at all
is to be expected, as the final version of the generalization bound will show.

3x = {1} x R9 is considered d-dimensional since the first coordinate zg = 1 is fixed.

52

2. TRAINING VERSUS TESTING 2.1. THEORY OF (GENERALIZATION

2.1.4 The VC Generalization Bound

If we treated the growth function as an effective number of hypotheses, and
replaced M in the generalization bound (2.1) with my (), the resulting bound
would be
? 1 me (N)
Eoui(9) < Ein — In ———.
9) < En(g) +1/ 5y I —

It turns out that this is not exactly the form that will hold. The quantities in
red need to be technically modified to make (2.11) true. The correct bound,
which is called the VC generalization bound, is given in the following theorem;
it holds for any binary target function f, any hypothesis set H, any learning
algorithm 4, and any input probability distribution P.

(2.11)

Theorem 2.5 (VC generalization bound). For any tolerance ¢ > 0,

8 In 4m7.[(QN)

Eout(g) < Ein(g) + N 5 (212)

with probability > 1 — 4.

If you compare the blue items in (2.12) to their red counterparts in (2.11), you
notice that all the blue items move the bound in the weaker direction. How-
ever, as long as the VC dimension is finite, the error bar still converges to zero
(albeit at a slower rate), since my(2N) is also polynomial of order dy¢ in N,
just like m4 (N). This means that, with enough data, each and every hypoth-
esis in an infinite H with a finite VC dimension will generalize well from Ejij,
to Eou. The key is that the effective number of hypotheses, represented by
the finite growth function, has replaced the actual number of hypotheses in
the bound.

The VC generalization bound is the most important mathematical result
in the theory of learning. It establishes the feasibility of learning with infinite
hypothesis sets. Since the formal proof is somewhat lengthy and technical, we
illustrate the main ideas in a sketch of the proof, and include the formal proof
as an appendix. There are two parts to the proof; the justification that the
growth function can replace the number of hypotheses in the first place, and
the reason why we had to change the red items in (2.11) into the blue items
in (2.12).

Sketch of the proof. The data set D is the source of randomization in the
original Hoeffding Inequality. Consider the space of all possible data sets. Let
us think of this space as a ‘canvas’ (Figure 2.2(a)). Each D is a point on that
canvas. The probability of a point is determined by which x,’s in A happen to
be in that particular D, and is calculated based on the distribution P over X.
Let’s think of probabilities of different events as areas on that canvas, so the
total area of the canvas is 1.

53

2. TramNG VERSUS TESTING 2.1. THrory OF GENEHALIZATION

2

space of
data sets

Fod

]
D

(a) Hoeffding Inequality (b} Tnion Bound {e) VO Bound

Figure 2.2: Nlustration of the proof of the VO bound, where the ‘canvas’
represents the space of all data sets, with areas corresponding to probabili-
ties. (a) For a given hypothesis, the colored points correspond to data sets
where Ei, does not generalize well to Euye. The Hoeffding Inequality guar-
antees a small colored area. (b} For several hypotheses, the union bound
assumes no overlaps, so the total colored area is large. (¢) The VO bound
keeps track of overlaps, so it estimates (he total area of bad generalization
to be relatively small.

For a given hypothesis h € H, the event *|Ey,(h) — E,u(h)| = €" consists
of all points D for which the statement is true. For a particular b, let us paint
all these ‘bad’ points using one color. What the basic Hoeffding Inequality
tells us is that the colored area on the canvas will be small (Figure 2.2(a)).

Now, if we take another h € H, the event *|E,,(h) — Eou (k)| = €' may
contain different points, since the event depends on h. Let us paint these points
with a different color. The area covered by all the points we colored will be
at most the sum of the two individual areas, which is the case only if the two
areas have no points in common, This is the worst case that the union bound
considers. If we keep throwing in a new colored area for each h € H, and never
overlap with previous colors, the canvas will soon be most Iy covered in color
(Figure 2.2(b)). Even if each h contributed vary little, the sheer mumber of
hypotheses will eventually make the colored area cover the whole canvas. This
was the problem with using the union bound in the Hoeffding Inequality (1.6),
and not taking the overlaps of the colored areas into consideration.

The bulk of the VC proof deals with how to account for the overlaps. Here
is the idea. 1f vou were told that the hypotheses in H are such that each
point on the canvas that is colored will be colored 100 times (because of 100
different /’s), then the total colored area is now 1,100 of what it would have
been if the colored points had not overlapped at all. This is the essence of
the VC bound as illust rated in (Figure 2.2(c)). The argument goes as follows.

2. TRAINING VERSUS TESTING 2.2, INTERPRETING THE BOUuND

Many hypotheses share the same dichotomy on a given P, since there are
finitely many dichotomies even with an infinite number of hypotheses, Auy
statement based on D alone will be simoltanecusly true or simultanecusly
false for all the hypotheses that look the same on that particular D, What
the growth function enables us to do is to account for this kind of hypothesis
redundancy in a precise way, so we can get a factor similar to the 1 in the
above example.

When H is infinite, the redundancy factor will also be infinite since the
hypotheses will be divided among a finite number of dichotomies. Therefore,
the reduction in the total ecolored area when we take the redundancy into
consideration will be dramatic, If it happens that the number of dichotomies
is only a polynomial, the reduction will be so dramatic as to bring the total
probability down to a very small value. This is the essence of the proof of
Theorem 2.5.

The reason ey (2N) appears in the VO bound instead of my(N) is that
the proof uses a sample of 2N points instead of NV points. Why do we need 2N
points? The event “|Ej,(h) — Eoue(h)] > € depends not only an D, but also ou
the entire X' because E.u(h) 15 based on &', This breaks the main premise of
grouping hi's based on their behavior on D, since aspects of each fi outside of D
affect the truth of “|Ey(h) — Eawe(h)| = " To remedy that, we consider the
artificial event * | Ei,(h) — £/, (h)| > € instead, where Ey, and E are based
on two samples D and D each of siee N. This is where the 2N comes from.
It accounts for the total size of the two samples D and D'. Now, the truth of
the statement “|Ey,(h) — Ef (k)| > ¢ depends exclusively on the total sample
of size 2N, and the above redundancy argument will hold,

Of course we have to justify why the two-sample condition “|Ei(h) —
E! (h)| = € can replace the original condition *|Ej,(h) — Equl(h)| =" In
doing so, we end up having to shrink the €'s by a factor of 4, and also end up
with a factor of 2 in the estimate of the overall probability. This accounts for
the £ instead of 5k in the VC bound and for having 4 instead of 2 as the
multiplicative factor of the growth function. When you put all this together,
vou get the formula in (2.12). §

2.2 Interpreting the Generalization Bound :

The VC generalization bound (2.12) is a universal result in the sense that
it applies to all hypothesis sets, learning algoritluns, input spaces, probability
distributions, and binary target functions, It can be extended to ﬂthﬂ_lq'ﬂ;ﬁ; of
target functions as well. Given the generality of the result, one would su

that the bound it provides may not be particularly tight in any given case,
since the same bound has to cover a lot of different cases. Indeed, the hond
is quite loose.

2. TRAINING VERSUS TESTING 2.2. INTERPRETING THE BOUND

Exercise 2.5

Suppose we have a simple learning model whose growth function is
mu(N) = N + 1, hence dvc = 1. Use the VC bound (2.12) to esti-
mate the probability that Eou: will be within 0.1 of Ei, given 100 training
examples. [Hint: The estimate will be ridiculous.]

Why is the VC bound so loose? The slack in the bound can be attributed to
a number of technical factors. Among them,

1. The basic Hoeffding Inequality used in the proof already has a slack.
The inequality gives the same bound whether E,,; is close to 0.5 or
close to zero. However, the variance of FEi, is quite different in these
two cases. Therefore, having one bound capture both cases will result
in some slack.

2. Using my(N) to quantify the number of dichotomies on N points, re-
gardless of which N points are in the data set, gives us a worst-case
estimate. This does allow the bound to be independent of the prob-
ability distribution P over X. However, we would get a more tuned
bound if we considered specific x1,--- ,xx and used [H(x1, -+ ,xy)| or
its expected value instead of the upper bound my (N). For instance, in
the case of convex sets in two dimensions, which we examined in Exam-
ple 2.2, if you pick N points at random in the plane, they will likely have
far fewer dichotomies than 2%, while my (N) = 2.

3. Bounding m (V) by a simple polynomial of order d,, as given in (2.10),
will contribute further slack to the VC bound.

Some effort could be put into tightening the VC bound, but many highly
technical attempts in the literature have resulted in only diminishing returns.
The reality is that the VC line of analysis leads to a very loose bound. Why
did we bother to go through the analysis then? Two reasons. First, the VC
analysis is what establishes the feasibility of learning for infinite hypothesis
sets, the only kind we use in practice. Second, although the bound is loose,
it tends to be equally loose for different learning models, and hence is useful
for comparing the generalization performance of these models. This is an
observation from practical experience, not a mathematical statement. In real
applications, learning models with lower dy. tend to generalize better than
those with higher d,.. Because of this observation, the VC analysis proves
useful in practice, and some rules of thumb have emerged in terms of the VC
dimension. For instance, requiring that N be at least 10 x dye to get decent
generalization is a popular rule of thumb.

Thus, the VC bound can be used as a guideline for generalization, relatively
if not absolutely. With this understanding, let us look at the different ways
the bound is used in practice.

56

2. TRAINING VERSUS TESTING 2.2. INTERPRETING THE BOUND

2.2.1 Sample Complexity

The sample complexity denotes how many training examples N are needed
to achieve a certain generalization performance. The performance is specified
by two parameters, € and J. The error tolerance e determines the allowed
generalization error, and the confidence parameter ¢ determines how often the
error tolerance ¢ is violated. How fast N grows as ¢ and § become smaller*
indicates how much data is needed to get good generalization.

We can use the VC bound to estimate the sample complexity for a given
learning model. Fix § > 0, and suppose we want the generalization error to
be at most e. From Equation (2.12), the generalization error is bounded by

\/ % In 4—m”5LN), and so it suffices to make 4/ % In m”T(QN) < e. It follows that

¥ S (220)

suffices to obtain generalization error at most € (with probability at least 1—6).
This gives an implicit bound for the sample complexity IV, since N appears on
both sides of the inequality. If we replace my(2N) in (2.12) by its polynomial
upper bound in (2.10) which is based on the the VC dimension, we get a

similar bound A
NG 1
s S (MDY, e
€

which is again implicit in N. We can obtain a numerical value for N using
simple iterative methods.

Example 2.6. Suppose that we have a learning model with dyc = 3 and
would like the generalization error to be at most 0.1 with confidence 90% (so
¢ = 0.1 and § = 0.1). How big a data set do we need? Using (2.13), we need

8 4(2N)> +4
> — _].
Nzgph (0.1)

Trying an initial guess of N = 1,000 in the RHS, we get

8 4(2 x 1000)® + 4
Nzgph (0.1

We then try the new value N = 21,193 in the RHS and continue this iterative
process, rapidly converging to an estimate of N = 30,000. If dy. were 4, a

similar calculation will find that N = 40, 000. For dve = 5, we get N = 50, 000.

You can see that the inequality suggests that the number of examples needed

is approximately proportional to the VC dimension, as has been observed in

practice. The constant of proportionality it suggests is 10,000, which is a gross

overestimate; a more practical constant of proportionality is closer to 10. O

) ~ 21,193.

4The term ‘complexity’ comes from a similar metaphor in computational complexity.

57

2. Tramwnc veErsus TESTING 2.2, InTERPRETING THE Bounnp

2.2.2 Penalty for Model Complexity

Sample complexity fixes the performance parameters € (generalization error)
and 4 (confidence parameter) and estimates how many examples N are needed.
In most practical situations, however, we are piven a fixed data set D, so N
is also fixed. In this case. the relevant question is what performance can we
expect given this particular N. The bound in (2.12) answers this question:
with probability at least 1 — 4,

: [8 (4my(2N)
Ec-ut[.ﬁ'] = E|I:I|::H}+ V N hl(F;) .

If we use the polynomial bound based on d,,. instead of my(2N), we get
another valid bound on the out-of-sample error,

' (4({2_&:3-f«- + u) (0.4

Eoulg) = Einlg) + \P/T In §

Example 2.7. Suppose that N = 100 and we have a 90% confidence require-
ment (§ = (.1}, We could ask what error bar can we offer with this confidence,
if H has d.. = 1. Using (2.14). we have

y 8 4(201)
< s i i) i 84 2.15
E"l:lllt-{.ql}) E:J:[HJ + \i"/l[]“]" (“.1) Eu:[ﬂJ 5 0. 8 [-'ld‘.l'

with confidence > 90%. This is a pretty poor bound on E,;. Even if E, = 0,
Eoyr muay still be close to 1, TN = 1, 000, then we get E o (g) < Ein(g)-+0.301,
a somewhat more respectable bound. (]

Let us look more closely at the two parts that make up the bound on B,
in (2.12). The first part is B, and the second part is a term that increases
as the VU dimension of H increases,

Eune(9) < Eualg) + N, 1, 6), (2.16)
where
N, H.6) = b'%m(f@)

1

/8 (4{[2ﬁ»"}‘*~-'+l])
f—=In .

1|'| J)

One way to think of (N, M, §) is that it is a penalty for model complexity. [t

penalizes us by worsening the hound on E,,, when we use a more complex H
(larger d,..). If someone manages to fit a simpler model with the same training

o8

2. Tramma vErsus TesTivGg 2.2, INTERPRETING THE BouNp

ont-of-sample errar

model complexity

Error

in-sample error

|
1
1
e VO dimension, dy.

Figure 2.3: When we use a more complex learning model, one that has
higher VC dimension dy., we are likely to fit the training data better re-
gilting in & lower in-sample error, but we pay a higher penalty for model
complexity, A combination of the two, which estimates the out-of-sample
error, thus attains a minimum at some intermediate o).

error, they will get a more favorable estimate for E,. The penalty (N, H, 4)
gets worse if we insist on higher confidence {lower 4), and it gets better when
we have more training examples, as we would expect.

Although (N, H,8) goes up when H has a higher VO dimension, E, is
likely to go down with a higher VC dimension as we have more choices within H
to fit the data. Therefore, we have a tradeoff: more complex models help Ei,
and hurt (N, H,4). The optimal model is a compromise that minimizes a
combination of the two terms, as illustrated informally in Figure 2.3.

2,2.3 The Test Set

As we have seen, the generalization bound gives us a loose estimate of the
out-of-sample error E,,, based on E;,. While the estimate can be useful as
a guideline for the training process, it is next to useless if the goal is to get
an accurate forecast of Euy. If vou are developing a system for a customer,
vou need a more accurate estimate so that your customer knows how well the
svstem is expected to perform, :

An alternative approach that we alluded to in the beginming of this chapter
is to estimate F,,, by using a test set, a data set that was not involved in the
training process. The final hypothesis g is evaluated on the test set, and the
result is taken as an estimate of Ey. We would like to now take a closer look
at this approach. =

Let us call the error we get on the test set Fies. When we report Eiowy 88
onr estimate of Eoy. we are in fact asserting that Ey., generalizes very well
to By, After all, By is just a sample estimate like Ejy. How do we know

=

a4

2. TRAINING VERSUS TESTING 2.2. INTERPRETING THE BOUND

that Fies: generalizes well? We can answer this question with authority now
that we have developed the theory of generalization in concrete mathematical
terms.

The effective number of hypotheses that matters in the generalization be-
havior of FEiest is 1. There is only one hypothesis as far as the test set is
concerned, and that’s the final hypothesis g that the training phase produced.
This hypothesis would not change if we used a different test set as it would if
we used a different training set. Therefore, the simple Hoeflding Inequality is
valid in the case of a test set. Had the choice of g been affected by the test
set in any shape or form, it wouldn’t be considered a test set any more and
the simple Hoeffding Inequality would not apply.

Therefore, the generalization bound that applies to Eje is the simple
Hoeffding Inequality with one hypothesis. This is a much tighter bound than
the VC bound. For example, if you have 1,000 data points in the test set, Fyeq
will be within 5% of Eq,, with probability > 98%. The bigger the test set
you use, the more accurate Fies; will be as an estimate of E, .

Exercise 2.6

A data set has 600 examples. To properly test the performance of the
final hypothesis, you set aside a randomly selected subset of 200 examples
which are never used in the training phase; these form a test set. You use
a learning model with 1,000 hypotheses and select the final hypothesis g
based on the 400 training examples. We wish to estimate E,,:(g). We have
access to two estimates: Ein(g), the in-sample error on the 400 training
examples; and, Eiest(g), the test error on the 200 test examples that were
set aside.

(a) Using a 5% error tolerance (8 = 0.05), which estimate has the higher
‘error bar'?

(b) Is there any reason why you shouldn't reserve even more examples for
testing?

Another aspect that distinguishes the test set from the training set is that the
test set is not biased. Both sets are finite samples that are bound to have
some variance due to sample size, but the test set doesn’t have an optimistic
or pessimistic bias in its estimate of Eoy. The training set has an optimistic
bias, since it was used to choose a hypothesis that looked good on it. The VC
generalization bound implicitly takes that bias into consideration, and that’s
why it gives a huge error bar. The test set just has straight finite-sample
variance, but no bias. When you report the value of Ejeq; to your customer
and they try your system on new data, they are as likely to be pleasantly
surprised as unpleasantly surprised, though quite likely not to be surprised at
all.

There is a price to be paid for having a test set. The test set does not
affect the outcome of our learning process, which only uses the training set.
The test set just tells us how well we did. Therefore, if we set aside some

60

2. TRAINING VERSUS TESTING 2.2. INTERPRETING THE BOUND

of the data points provided by the customer as a test set, we end up using
fewer examples for training. Since the training set is used to select one of the
hypotheses in H, training examples are essential to finding a good hypothesis.
If we take a big chunk of the data for testing and end up with too few examples
for training, we may not get a good hypothesis from the training part even if
we can reliably evaluate it in the testing part. We may end up reporting to
the customer, with high confidence mind you, that the g we are delivering is
terrible (©). There is thus a tradeoff to setting aside test examples. We will
address that tradeoff in more detail and learn some clever tricks to get around
it in Chapter 4.

In some of the learning literature, Eies is used as synonymous with Foyy.
When we report experimental results in this book, we will often treat Fies
based on a large test set as if it was Eqy because of the closeness of the two
quantities.

2.2.4 Other Target Types

Although the VC analysis was based on binary target functions, it can be
extended to real-valued functions, as well as to other types of functions. The
proofs in those cases are quite technical, and they do not add to the insight
that the VC analysis of binary functions provides. Therefore, we will introduce
an alternative approach that covers real-valued functions and provides new
insights into generalization. The approach is based on bias-variance analysis,
and will be discussed in the next section.

In order to deal with real-valued functions, we need to adapt the definitions
of B, and Eoy, that have so far been based on binary functions. We defined Ejy
and E,,; in terms of binary error; either h(x) = f(x) or else h(x) # f(x). If f
and h are real-valued, a more appropriate error measure would gauge how far
f(x) and h(x) are from each other, rather than just whether their values are
exactly the same.

An error measure that is commonly used in this case is the squared error
e(h(x), f(x)) = (h(x) — f(x))?. We can define in-sample and out-of-sample
versions of this error measure. The out-of-sample error is based on the ex-
pected value of the error measure over the entire input space X,

Eout(h) =E [(h(x) - f(x))ﬂ ’

while the in-sample error is based on averaging the error measure Over the
data set,

N
1 2
Ein(h) - N ;(h(xn) - f(xn)) .
These definitions make F;, a sample estimate of Eqyt just as it was in the case

of binary functions. In fact, the error measure used for binary functions can
also be expressed as a squared error.

61

2. TRAINING VERSUS TESTING 2.3. APPROXIMATION-GENERALIZATION

Exercise 2.7

For binary target functions, show that P[h(x) # f(x)] can be written as an
expected value of a mean-squared error measure in the following cases.

(a) The convention used for the binary function is 0 or 1.

{(b) The convention used for the binary function is %1.

[Hint: The difference between (a) and (b) is just a scale.]

Just as the sample frequency of error converges to the overall probability of
error per Hoeffding’s Inequality, the sample average of squared error converges
to the expected value of that error (assuming finite variance). This is a man-
ifestation of what is referred to as the ‘law of large numbers’ and Hoeffding’s
Inequality is just one form of that law. The same issues of the data set size
and the hypothesis set complexity come into play just as they did in the VC
analysis.

2.3 Approximation-Generalization Tradeoff

The VC analysis showed us that the choice of H needs to strike a balance
between approximating f on the training data and generalizing on new data.
The ideal # is a singleton hypothesis set containing only the target function.
Unfortunately, we are better off buying a lottery ticket than hoping to have
this #. Since we do not know the target function, we resort to a larger model
hoping that it will contain a good hypothesis, and hoping that the data will
pin down that hypothesis. When you select your hypothesis set, you should
balance these two conflicting goals; to have some hypothesis in H that can
approximate f, and to enable the data to zoom in on the right hypothesis.

The VC generalization bound is one way to look at this tradeoff. If H is
too simple, we may fail to approximate J well and end up with a large in-
sample error term. If H is too complex, we may fail to generalize well because
of the large model complexity term. There is another way to look at the
approximation-generalization tradeoff which we will present in this section. It
is particularly suited for squared error measures, rather than the binary error
used in the VC analysis. The new way provides a different angle; instead of
bounding F,; by Ei, plus a penalty term Q, we will decompose Ey into two
different error terms.

2.3.1 Bias and Variance

The bias-variance decomposition of out-of-sample error is based on squared
error measures. The out-of-sample error is

Eou(s™) = Ex [(9P) - 13)?] (2.17)

62

2. TRAINING VERSUS TESTING 2.3. APPROXIMATION-GENERALIZATION

where E,. denotes the expected value with respect to x (based on the probabil-
* ity distribution on the input space X'). We have made explicit the dependence
of the final hypothesis g on the data D, as this will play a key role in the cur-
rent analysis. We can rid Equation (2.17) of the dependence on a particular
data set by taking the expectation with respect to all data sets. We then get
the expected out-of-sample error for our learning model, independent of any
particular realization of the data set,

Ep [Bou(9™)] = En [Exl(s® (0~ £(0)”]
= B [Eols™ (x) - /(x))?)]
= Ex [Eplg™ (7] - 2Ep o ()] £(x) + F(x)7.

The term Ep[g(P)(x)] gives an ‘average function’, which we denote by §(x).
One can interpret g(x) in the following operational way. Generate many data
sets D1, ..., Dk and apply the learning algorithm to each data set to produce
final hypotheses gl, o gr. We can then estimate the average function for
any x by §(x) ~ % Ly K 1 9k(x). Essentially, we are viewing g(x) as a random
variable, with the randomness coming from the randomness in the data set;
G(x) is the expected value of this random variable (for a particular x), and g
is a function, the average function, composed of these expected values. The
function § is a little counterintuitive; for one thing, § need not be in the
model’s hypothesis set, even though it is the average of functions that are.

Exercise 2.8

(a) Show that if # is closed under linear combination (any linear combi-
nation of hypotheses in 7 is also a hypothesis in H), then § € H.

(b) Give a model for which the average function g is not in the model’s
hypothesis set. [Hint: Use a very simple model.}

(c) For binary classification, do you expect g to be a binary function?

We can now rewrite the expected out-of-sample error in terms of g:
Ep|Eou(g™)]
= B [Boly ™ (x)?] - 2900 () + F)?]
B Enle®097] — g0)? + 097 ~ 2060706) + £097]
(x

Ep [(¢'P)(x) ~ 3(x))?] (560 - f)
where the last reduction follows since g(x) is constant with respect to D.
The term (g(x) — f(x))? measures how much the average function that we

would learn using different data sets D deviates from the target function that
generated these data sets. This term is appropriately called the bias:

bias(x) = (§(x) — f(x))%,

63

2. Traming vERSUS TESTING 2.3, APPROXIMATION-GENERALIZATION

as it measures how much our learning model is bissed away from the target
function.” This is because § has the benefit of lesrning from an unlimited
number of data sets, so it is only limited in its ability to approximate f by
the limitation in the learning model itsell. The term Ep [{H'-lex] = g}[x:l]'*']
is the variance of the random variable '™ (x),
var(x) = Ep[(g"™(x) — a(x))?,

which measures the varfation in the final hypothesis, depending on the data
set, We thus arrive at the bias-variance decomposition of out-of-sample error,

[E"I"lE-:.ulr{Hl.Fl:ll -l
= hias + var,

[y [bias(x) + var(x}]

where bias = Ey |bias(x)] and var = Ey|var{x)|. Our derivation assumed that
the data was noiseless. A similar derivation with noise in the data would lead
to an additional noise term in the out-of-sample error (Problem 2,22}, The
noise term is unavoidable no matter what we do, so the terms we are interested
in are really the bias and var.

The approximation-generalization tradeoff is captured in the bias-variance
decomposition. To illustrate, let's consider two extreme cases: a very small
model (with one hypothesis}) and a very laree one with all hypotheses.

Very small model. Since there is Very large model. The target

only one hypothesis, both the av-
erage function § and the final hy-
pothesis g'™ will be the same, for
any data set. Thus, var = (I, The
bias will depend solely on how well
this single hypothesis approximates
the target f, and unless we are ex-
tremely lucky, we expect a large
bias.

function is in #. Different data sets
will lead to different hypotheses that
agree with f on the data set, and are
spread around f in the red region
Thus, bias = 0 becanse § is likely
to be close to f. The var is large
{heuristically represented by the size
af the red region in the figure).

Otie can also view the variance as a measure of ‘instability’ in the learning
model. Instability manifests in wild reactions to small variations or idiosyn-
crasies in the data, resulting in vastly different hypotheses.

L 5 = R e 5
What we call bias is sometimes called bias® in the literature

G4

2, Trammivg veERsus TESTING 2.3, APPROXIMATION-GENERALIZATION

Example 2.8, Consider a target function f{x) = sin(sz) and a data set
of size N = 2. We sample & uniformly in [-1,1] to generate a data set
(71,41). (2. y2); and fit the data nsing one of two models:

Ho: Set of all lines of the form k(z) = &
Hyt Set of all lines of the form h{x) = ax 4+ b

For Hg. we choose the constant hypothesis that best fits the data (the hori-
zontal line at the midpoint, b = L282), For H,, we choose the line that passes
through the two data points (27, 3) and (2, y2). Repeating this process with
many data sets, we can estimate the bias and the variance. The figures which
follow show the resulting fits on the same (random) data sets for both models,

With H,, the learned hypothesis is wilder and varies extensively depending
on the data set. The bias-var analysis is summarized in the next figures.

ginfx)
x
Hao Hi
hias = (.50 bias = 0.21;
var = (L25. var = 1.69,

Average hypothesis 7 (red) with var(z) indicated by the gray shaded
region that is §lx) £ /var{z]).

For H,. the average hypothesis § (red line) is a reasonable fit with a fairly
small bias of 0.21. However, the large variability leads to a high var of]r-ﬁﬁ
resulting in a large expected out-of-sample error of 1.9(0. With the simpler

G5

2. Traming VERSUS TESTING 2.3, APPROXIMATION-GENERALIZATION

model Hy, the fits are much less volatile and we have a significantly lower var
of 0.25, as indicated by the shaded region. However, the average fit is now
the zero function, resulting in a higher bias of 0.50. The total out-of-sample
error has o much smaller expected value of 0.75. The simpler model wins by
significantly decreasing the var at the expense of a smaller increase in bias.
Notice that we are not comparing how well the red curves (the average hy-
potheses) fit the sine. These curves are only conceptual, since in real learning
we do not have access to the multitude of data sets needed to generate them,
We have one data set, and the simpler model results in a better out-of-sample
error on average as we fit our model to just this one data, However, the var
term decreases as N increases, so if we get a higger and bigger data set, the
bias term will be the dominant part of E,;, and H; will win, O

The learning algorithm plays a role in the bias-variance analysis that it did
not play in the VO analysis. Two points are worth noting,

I. By design, the VO analysis is based purely on the hypothesis set H, in-
dependently of the learning algorithm A. In the bias-variance analysis,
both H and the algorithm A4 matter, With the same H, using a differ-
ent learning algorithm can produce a different ¢'®'. Since ¢'™ is the
building block of the bias-variance analysis, this may result in different
bias and var terms,

2. Although the biss-variance analysis is based on squared-error measure,
the learning algorithm itself does not have to be based on minimizing
the squared error. It can use any criterion to produce '™/ based on D.
However, once the algorithm produces g'P', we measure its bias and
variance using squared error.

Unfortunately, the bias and variance cannot be computed in practice, since
they depend on the target function and the input probability distribution (both
unknown). Thus, the bias-variance decomposition is a conceptual tool which
is helpful when it comes to developing a model. There are two typical goals
when we consider bias and variance. The first is to try to lower the variance
without significantly increasing the bias, and the second is to lower the bias
without significantly increasing the variance, These goals are achieved by
different techniques, some principled and some heuristic. Regularization is
one of these techniques that we will discuss in Chapter 4. Reducing the bias
without increasing the variance requires some prior information regarding the
target function to steer the selection of H in the direction of £, and this task is
largely application-specific. On the other hand, reducing the variance without
compromising the bias can be done throngh general techniques.

2.3.2 The Learning Curve

We close this chapier with an important plot that illustrates the tradeoffs
that we have seen so far, The learning curves sumimarize the behavior of the

Gl

2, Tranmwe vErsus TESTING 2.3, AprROXIMATION-GENERALIZATION

in-sample and out-of-sample errors as we vary the size of the training set.

After learning with a particular data set D of size N, the final hypothe-
sis g'™) has in-sample error B, (4'P)) and out-of-sample error E,, ('™}, both
of which depend on P, As we saw in the bias-variance analysis, the expectation
with respect to all data sets of size N gives the expected errors: Ep|[Eiy(g™™))]
and EplEoun(g'T")]. These expected errors are functions of N, and are called
the learning curves of the model. We illustrate the learning curves for a simple
learning model and a complex one, based on actual experiments.

B 5
B B ¥
g B
;. =
& &
//Eh__
Number of Data Points, N Number of Data Points, N
Simple Model Complex Model

Notice that for the simple model, the learning curves converge more quickly
but to worse ultimate performance than for the complex model. This behavior
is typical in practice. For both simple and complex models, the out-of-sample
learning curve is decreasing in N, while the in-sample learning curve i5 in-
creasing in N. Let us take a closer look at these curves and interpret them in
terms of the different approaches to generalization that we have discussed.

In the VC analysis, ., was expressed as the sum of Ej, and a generaliza-
tion error that was bounded by €, the penalty for model complexity. In the
bias-variance analysis, E,, was expressed as the sum of a bias and a variance,
The following learning curves illustrate these two approaches side by side.

£

&

=4
=
=i

:
=

Expected Error

Number of Data Points, NV

Number of Data Points, N
VC Analysis Bias-Variance Analysis

67

2. TRAINING VERSUS TESTING 2.3. APPROXIMATION-GENERALIZATION

The VC analysis bounds the generalization error which is illustrated on the
left.® The bias-variance analysis is illustrated on the right. The bias-variance
illustration is somewhat idealized, since it assumes that, for every N, the aver-
age learned hypothesis g has the same performance as the best approximation
to f in the learning model.

When the number of data points increases, we move to the right on the
learning curves and both the generalization error and the variance term shrink,
as expected. The learning curve also illustrates an important point about Ej,.
As N increases, E;, edges toward the smallest error that the learning model
can achieve in approximating f. For small N, the value of Ey, is actually
smaller than that ‘smallest possible’ error. This is because the learning model
has an easier task for smaller N; it only needs to approximate f on the N
points regardless of what happens outside those points. Therefore, it can
achieve a superior fit on those points, albeit at the expense of an inferior fit
on the rest of the points as shown by the corresponding value of Fyyus.

6 .
] For the learning curve, we take the expected values of all quantities with respect to D
of size N.

68

2. TRAINING VERSUS TESTING 2.4. PROBLEMS

2.4 Problems

Problem 2.1 In Equation (2.1), set § = 0.03 and let

1 2M
€(M,N,5)—— ﬁln—s—
(a) For M =1, how many examples do we need to make € < 0.057
(b) For M =100, how many examples do we need to make e < 0.057

(c) For M = 10,000, how many examples do we need to make ¢ < 0.057

Problem 2.2 Show that for the learning model of positive rectangles
(aligned horizontally or vertically), ma (4) = 2* and mu(5) < 25 Hence, give
a bound for m (N).

Problem 2.3 Compute the maximum number of dichotomies, ma (N),
for these learning models, and consequently compute dve, the VC dimension.

(a) Positive or negative ray: H contains the functions which are +1 on [a, o)
(for some a) together with those that are +1 on (—o0, a] (for some a).

(b) Positive or negative interval: contains the functions which are +1 on
an interval [a,b] and —1 elsewhere or —1 on an interval [a,b] and +1
elsewhere.

(c) Two concentric spheres in R¢: H contains the functions which are +1 for
a<Jr2+.. +ai<h

Problem 2.4 Show that B(N, k) = 3.°7 (%) by showing the other
direction to Lemma 2.3, namely that

B(N,k)gi(f) .

To do so, construct a specific set of Zf;ol (Jj) dichotomies that does not
shatter any subset of k variables. [Hint: Try limiting the number of —1's in
each dichotomy.]

D
Problem 2.5 Prove by induction that 3 (7)) < NP +1, hence
i=0

ma(N) < N&e + 1.

69

2. TRAINING VERSUS TESTING 2.4. PROBLEMS

Problem 2.6 Prove that for N > 4,

(7)< (%)

We suggest you first show the following intermediate steps.

@ SM<EME T =@ M@
(b) % (]ZV) (%)Z < e?. [Hints: Binomial theorem; 1+ <eforz> 0.]

s
Il
S

v
Hence, argue that my (N) < (ﬂ) ‘)

dve

Problem 2.7 Plot the bounds for m4 () given in Problems 2.5 and 2.6
for dvc = 2 and dvc = 5. When do you prefer one bound over the other?

Problem 2.8 Which of the following are possible growth functions mq (V)
for some hypothesis set:

’

1+N; 1+N+w. 2. QLWJ; QLN/QJ; 1+N+w.

Problem 2.9 For the perceptron learning model in d dimensions, show
that the growth function is given by

mH(N):jYé(]Z,V).

Therefore, what is dvo? In this case, the bound in Theorem 2.4 is tight.

Problem 2.10 Show that m#(2N) < m«(N)?, and hence obtain a
generalization bound which only involves mu(N).

Problem 2.11 Suppose m#{(N) = N + 1, s0 dve = 1. You have 100
training examples. Use the generalization bound to give a bound for E,,; with
confidence 90%. Repeat for N = 10, 000.

70

2. TRAINING VERSUS TESTING 2.4. PROBLEMS

Problem 2.12 For an H with dyc = 10, what sample size do you need
(as prescribed by the generalization bound) to have a 95% confidence that your
generalization error is at most 0.057

Problem 2.13
(a) Let H = {h1,ha,...,ha} with some finite M. Prove that dvc(H) <
log, M.

(b) For hypothesis sets 1, Ha, - -+, Hx with finite VC dimensions dve(He),
derive and prove the tightest upper and lower bound that you can get
on dve (NFe1He).

(c) For hypothesis sets Hi1, Ha, - - -, Hx with finite VC dimensions dve(He),
derive and prove the tightest upper and lower bounds that you can get
on dve (Uszl?{k).

Problem 2.14 Let H1,Ha, ..., Hx be K hypothesis sets with finite VC
dimension dye. Let H = H1 UHz U---UHxk be the union of these models.

(a) Show that dve(H) < K(dve +1).
(b) Suppose that £ satisfies 2!~ K¢t Show that dve(H) < L.
(c) Hence, show that

dve(®) < min (K(dve + 1), dve logy dve + (dve + 1) logy K).

For small K, dve(H) = O(dvc log, dve + dve logy K) is not too bad.

Problem 2.15 The monotonically increasing hypothesis set is
H = {h \ X| > X2 =— h(Xl) > h(Xg)},
where x1 > x3 if and only if the inequality is satisfied for every component.

(a) Give an example of a monotonic classifier in two dimensions, clearly show-
ing the +1 and —1 regions.

(b) Compute my(NN) and hence the VC dimension. [Hint: Consider a set
of N points generated by first choosing one point, and then generating the
next point by increasing the first component and decreasing the second
component until N points are obtained.]

71

2. TRAINING VERSUS TESTING 2.4. PROBLEMS

Problem 2.16 In this problem, we will consider X = R. That is, x = z
is a one-dimensional variable. For a hypothesis set

H= {hc he(z) = sign (Z cia:i> } ,

prove that the VC dimension of # is exactly (D + 1) by showing that

(a) There are (D + 1) points which are shattered by H.
(b) There are no (D + 2) points which are shattered by .

Problem 2.17 The VC dimension depends on the input space as well
as H. For a fixed H, consider two input spaces X1 C Xo. Show that the VC
dimension of H with respect to input space X; is at most the VC dimension
of H with respect to input space As.

How can the result of this problem be used to answer part (b) in Problem 2.167
[Hint: How is Problem 2.16 related to a perceptron in D dimensions?]

Problem 2.18 The VC dimension of the perceptron hypothesis set
corresponds to the number of parameters (wo, w1, -+ ,wq) of the set, and this
observation is ‘usually’ true for other hypothesis sets. However, we will present
a counter-example here. Prove that the following hypothesis set for z € R has
an infinite VC dimension:

H:{ha

ha(z) = (=1)1°%), where a €]R} ,

where [A] is the biggest integer < A (the floor function). This hypothesis
has only one parameter o but ‘enjoys’ an infinite VC dimension. [Hint: Con-
sider x1,..., 2N, where ¢, = 10™, and show how to implement an arbitrary
dichotomy y1,...,yn.]

Problem 2.19 This problem derives a bound for the VC dimension of a
complex hypothesis set that is built from simpler hypothesis sets via composi-
tion. Let Hy,...,Hx be hypothesis sets with VC dimension dy, . . . ,dg. Fix
hi,... ki, where h; € #;. Define a vector z obtained from x to have com-
ponents h;(x). Note that x € R?, but z € {—1,+1}*. Let # be a hypothesis
set of functions that take inputs in R*. So

heH:zeRX — {+1,-1},

and suppose that # has VC dimension d.

72

2. TRAINING VERSUS TESTING 2.4. PROBLEMS

We can apply a hypothesis in H to the z constructed from (h1,...,hx). This
is the composition of the hypothesis set H with (Ha, ..., Hk). More formally,
the composed hypothesis set H = H o (H1,...,Hk) is defined by h € H if

h’(x):ﬁ(hl(x)w"?hK(x))v Be,}:l; hz eHi-
(a) Show that

K
ma(N) < mg(N) Hmﬂi(N)l (2.18)

[Hint: Fix N points x1,...,xx and fix h1,...,hk. This generates N
transformed points z1,...,%Zn. These z1,...,2n can be dichotomized
in at most my(N) ways, hence for fixed (hi,...,hk), (X1,...,Xn)
can be dichotomized in at most my{N) ways. Through the eyes of
X1,...,XN, at most how many hypotheses are there (effectively) in H;?
Use this bound to bound the effective number of K-tuples (h1,. .., hi)
that need to be considered. Finally, argue that you can bound the number
of dichotomies that can be implemented by the product of the number
of possible K-tuples (ha,...,hk) and the number of dichotomies per
K-tuple.]

dve
(b) Use the bound m(N) < (%) to get a bound for mz (N) in terms of
ddi,....dk.
(c) Let D=d+ S°K . di, and assume that D > 2log, D. Show that

dve(H) < 2D]log, D.
(d) If H; and H are all perceptron hypothesis sets, show that
dve(H) = O(dK log(dK)).

In the next chapter, we will further develop the simple linear model. This linear
model is the building block of many other models, such as neural networks.
The results of this problem show how to bound the VC dimension of the more
complex models built in this manner.

Problem 2.20 There are a number of bounds on the generalization
error ¢, all holding with probability at least 1 — 4.

(a) Original VC-bound:
8 | 4mu(2N)

e < 1 3

=|

(b) Rademacher Penalty Bound:

2In(2Nmw (N)) \P_ 1 1
ES\/ N YNt

(continued on next page)

73

. TRAINING VERSUS TESTING 2.4. PROBLEMS

(c) Parrondo and Van den Broek:

/1 6my (2N)
< .= DIPHNSY T
e < N (26+ln 5)

€< \/% <4e(1+e)+lnw>.

Note that (c) and (d) are implicit bounds in €. Fix dve = 50 and 6 = 0.05 and
plot these bounds as a function of V. Which is best?

(d) Devroye:

Problem 2.21 Assume the following theorem to hold

Theorem

Eout(g) — Ein(g)

V Eout(g)

where c is a constant that is a little bigger than 6.

N
>e| <c-myu(2N)exp 1)

This bound is useful because sometimes what we care about is not the absolute
generalization error but instead a relative generalization error (one can imagine
that a generalization error of 0.01 is more significant when Eous = 0.01 than
when E,.; = 0.5). Convert this to a generalization bound by showing that
with probability at least 1 — §,

Eout(g) < Ein(g) +

N |y

{1+ 1_|_4E15(9) }’

where € = £ log “msEN)

Problem 2.22 When there is noise in the data, Eou(g'®)) =
By (9P (%) — y(x))?], where y(x) = f(x) 4+ €. If € is a zero-mean noise
random variable with variance o, show that the bias-variance decomposition
becomes

Ep[Eous (g<D))] = ¢? + bias + var.

Problem 2.23 Consider the learning problem in Example 2.8, where the
input space is X’ = [=1,+1], the target function is f(z) = sin(nz), and the
input probability distribution is uniform on X. Assume that the training set D
has only two data points (picked independently), and that the learning algorithm
picks the hypothesis that minimizes the in-sample mean squared error. In this
problem, we will dig deeper into this case.

74

2. TRAINING VERSUS TESTING 2.4. PROBLEMS

For each of the following learning models, find (analytically or numerically)
(i) the best hypothesis that approximates f in the mean-squared-error sense
(assume that f is known for this part), (ii) the expected value (with respect
to D) of the hypothesis that the learning algorithm produces, and (iii) the
expected out-of-sample error and its bias and var components.

(a) The learning model consists of all hypotheses of the form h(z) = ax + b
(if you need to deal with the infinitesimal-probability case of two identical
data points, choose the hypothesis tangential to f).

(b) The learning model consists of all hypotheses of the form h(z) = ax.
This case was not covered in Example 2.8.

(c) The learning model consists of all hypotheses of the form h(z) = b.

Problem 2.24 Consider a simplified learning scenario. Assume that
the input dimension is one. Assume that the input variable x is uniformly
distributed in the interval [—1,1]. The data set consists of 2 points {z1,x2}
and assume that the target function is f(x) = 2°. Thus, the full data set is
D = {(z1,2%), (z2,23)}. The learning algorithm returns the line fitting these
two points as g (H consists of functions of the form h(z) = ax + b). We are
interested in the test performance (Eout) of our learning system with respect
to the squared error measure, the bias and the var.

(a) Give the analytic expression for the average function g(z).

(b) Describe an experiment that you could run to determine (numerically)
g(x), Fout, bias, and var.

(c) Run your experiment and report the results. Compare Eout with bias+var.
Provide a plot of your g(x) and #(z) (on the same plot).

(d) Compute analytically what Eout, bias and var should be.

75

76

Chapter 3

The Linear Model

We often wonder how to draw a line between two categories; right versus
wrong, personal versus professional life, useful email versus spam, to name a
few. A line is intuitively our first choice for a decision boundary. In learning,
as in life, a line is also a good first choice.

In Chapter 1, we (and the machine ()) learned a procedure to ‘draw a line’
between two categories based on data (the perceptron learning algorithm). We
started by taking the hypothesis set H that included all possible lines (actually
hyperplanes). The algorithm then searched for a good line in #H by iteratively
correcting the errors made by the current candidate line, in an attempt to
improve Ei,. As we saw in Chapter 2, the linear model - set of lines — has a
small VC dimension and so is able to generalize well from FEi, to Eous.

The aim of this chapter is to further develop the basic linear model into a
powerful tool for learning from data. We branch into three important prob-
lems: the classification problem that we have seen and two other important
problems called regression and probability estimation. The three problems
come with different but related algorithms, and cover a lot of territory in
learning from data. As a rule of thumb, when faced with learning problems,
it is generally a winning strategy to try a linear model first.

3.1 Linear Classification

The linear model for classifying data into two classes uses a hypothesis set of -
linear classifiers, where each h has the form

h(x) = sign(w'x),

for some column vector w € R%*1 where d is the dimensionality of the input
space, and the added coordinate xq = 1 corresponds to the bias ‘weight’ wo
(recall that the input space X = {1} x R is considered d-dimensional since
the added coordinate 2y = 1 is fixed). We will use h and w interchangeably

7

J. VHE LINEAR MODEL 3.1 LineEar CLASSIFICATION

to refer to the hypothesis when the context is clear. When we left Chapter 1,
we had two basic eriteria for learning:

I. Can we make sure that £, (g) is close to Ej,(g)7? This ensures that what
we have learned in sample will generalize out of sample.

2. Can we make FEy,(g) small? This ensures that what we have learned in
sample is a good hypothesis.

The first eriterion was studied in Chapter 2. Specifically, the VC dimension
of the linear model is only d 4+ 1 (Exercise 2.4). Using the VC generalization
bound (2.12}, and the bound (2.10) on the growth function in terms of the
VC dimension, we conclude that with high probability.

i ! d :
Eouwlg) = Enlg) +0O (1”-' % In "'v.) ; (3.1)

Thus, when ¥ is sufficiently large, E;, and E., will be close to each ot her
(see the definition of O(-) in the Notation table), and the first criterion for
learning is fulfilled.

The second criterion, making sure that £, is small. requires Hrst and
foremost that there is some linear hiypothesis that has small E,. 1f there
isn’t such a linear hypothesis, then learning certainly can’t find one. So. let’s
suppose for the moment that there is a linear hypothesis with small £,,. In
fact. let's suppose that the data is linearly separable, which means there is
some hypothesis w* with Ei,(w*) = 0. We will deal with the case when this
is not true shortly,

In Chapter 1, we introduced the perceptron learning algorithm (PLA).
Start with an arbitrary weight vector w(0). Then, at every time step £ = (),
select any misclassified data point (x(1), y(t)), and update w(i) as follows:

wit+ 1) = wi(t) + w{lx(t).

The intuition is that the update is attempting to correct the error in classify-
ing x(t). The remarkable thing is that this incremental approach of learning
based on one data point at a time works, As discussed in Problem 1.3, it can be
proved that the PLA will eventually stop updating, ending at a solution w, ,
with Ei,(we.) =0, Although this result applies to a restricted setting (lin-
early separable data), it is a significant step. The PLA is clever - it doesn’t
naively test every linear hypothesis to see if it (the hypothesis) separates the
data; that would take infinitely long, Using an iterative approach, the PLA
manages to search an infinite hypothesis set and output a linear separator in
(provably) finite time,

“As far as PLA is concerned, lincar separability s a property of the data.
not the tamget, A linearly separable D could have been generated either from
a linearly separable target, or (by chance) from a target that is not linearly
separable, The convergence proof of PLA guarantees that the algorithm will

T8

3. Tue Lingan MopgL 3.1, LiNea CLASSIFICATION

{a) Few noisy data, {b) Nonlinearly separable,

Figure 3.1: Data sets that are not linearly separable but are (a) linearly
separable after discarding a few examples, or (b) separable by & more so-
phisticated curve.

work in both these cases, and produce a hypothesis with By, = 0. Further,
in both cases, you can be confident that this performance will generalize well
out of sample, according to the VC bound.

Exercise 3.1
Will PLA ever stop updating if the data is not linearly

3.1.1 Non-Separable Data

We now address the case where the data is not linearly separable. Figure 3.1
shows two data sets that are not linearly separable, In Figure 3.1{a), the data
hecomes linearly separable after the removal of just two examples, which could
be considered noisy examples or outliers. In Figure 3.1(b), the data can he
separated by a circle rather than a line. In both cases, there will always be
& misclassified training example if we insist on using 4 linear hypothesis, and
hence PLA will never terminate. In fact, its behavior becomes quite unstable,
and can jump from a good perceptron to a very had one within one update; the
quality of the resulting E;, cannot be guaranteed. In Figure 3.1(a), it seems
appropriate to stick with a line, but to somehow tolerate noise and output a
hypothesis with a small Ej,, not necessarily i, = 0. 11 Figure 3.1(b), the
linear model does not seem to be the correct model in the first place, lﬂd we
will discuss a technique called nonlinear transformation for this situation n
Section 3.4.

3. THE LINEAR MODEL 3.1. LINEAR CLASSIFICATION

The situation in Figure 3.1(a) is actually encountered very often: even
though a linear classifier seems appropriate, the data may not be linearly sep-
arable because of outliers or noise. To find a hypothesis with the minimum Ej,,,
we need to solve the combinatorial optimization problem:

weRd+1

LN
min i Z [sign(w™x,) # yn] . (3.2)
n=1

Ein (W)

The difficulty in solving this problem arises from the discrete nature of both
sign(-) and [-]. In fact, minimizing Ei,(w) in (3.2) in the general case is known
to be NP-hard, which means there is no known efficient algorithm for it, and
if you discovered one, you would become really, really famous (). Thus, one
has to resort to approximately minimizing Ej,.

One approach for getting an approximate solution is to extend PLA through
a simple modification into what is called the pocket algorithm. Essentially, the
pocket algorithm keeps ‘in its pocket’ the best weight vector encountered up
to iteration ¢ in PLA. At the end, the best weight vector will be reported as
the final hypothesis. This simple algorithm is shown below.

The pocket algorithm:

1: Set the pocket weight vector w to w(0) of PLA.

2: fort=0,....,T—1do

3: Run PLA for one update to obtain w(t + 1).

4: BEvaluate Ei,(w(t + 1)).

5. If w(t + 1) is better than W in terms of Ei,, set W to
w(t+1).

6: Return w.

The original PLA only checks some of the examples using w{(t) to identify
(x(t),y(t)) in each iteration, while the pocket algorithm needs an additional
step that evaluates all examples using w(t + 1) to get Ei,(w(t+ 1)). The
additional step makes the pocket algorithm much slower than PLA. In addi-
tion, there is no guarantee for how fast the pocket algorithm can converge to a
good Ei,. Nevertheless, it is a useful algorithm to have on hand because of its
simplicity. Other, more efficient approaches for obtaining good approximate
solutions have been developed based on different optimization techniques, as
shown later in this chapter.

Exercise 3.2

Take d = 2 and create a data set D of size N = 100 that is not linearly
separable. You can do so by first choosing a random line in the plane as
your target function and the inputs x, of the data set as random points
in the plane. Then, evaluate the target function on each x, to get the
corresponding output y,. Finally, flip the labels of ‘1N6 randomly selected
Yn's and the data set will likely become non-separable.

80

3. THE LINEAR MODEL 3.1. LINEAR CLASSIFICATION

Now, try the pocket algorithm on your data set using T = 1, 000 iterations.
Repeat the experiment 20 times. Then, plot the average Fi,(w(t)) and the
average Fi, (W) (which is also a function of t) on the same figure and see
how they behave when t increases. Similarly, use a test set of size 1,000
and plot a figure to show how Eou(w(t)) and Eqou (W) behave.

Example 3.1 (Handwritten digit recognition). We sample some digits from
the US Postal Service Zip Code Database. These 16 x 16 pixel images are
preprocessed from the scanned handwritten zip codes. The goal is to recognize
the digit in each image. We alluded to this task in part (b) of Exercise 1.1.
A quick look at the images reveals that this is a non-trivial task (even for a
human), and typical human Eqy, is about 2.5%. Common confusion occurs
between the digits {4,9} and {2, 7}. A machine-learned hypothesis which can
achieve such an error rate would be highly desirable.

Let’s first decompose the big task of separating ten digits into smaller tasks of
separating two of the digits. Such a decomposition approach from multiclass
to binary classification is commonly used in many learning algorithms. We
will focus on digits {1,5} for now. A human approach to determining the
digit corresponding to an image is to look at the shape (or other properties)
of the black pixels. Thus, rather than carrying all the information in the 256
pixels, it makes sense to summarize the information contained in the image’
into a few features. Let’s look at two important features here: intensity and
symmetry. Digit 5 usually occupies more black pixels than digit 1, and hence
the average pixel intensity of digit 5 is higher. On the other hand, digit 1
is symmetric while digit 5 is not. Therefore, if we define asymmetry as the
average difference between an image and its flipped versions, and symmetry as
the negation of asymmetry, digit 1 would result in a higher symmetry value.
A scatter plot for these intensity and symmetry features for some of the digits
is shown next.

81

3. Toe Linear MoDEL 3.2, Lingan REGRESSION

L

X

While the digits can be roughly separated by a line in the plane representing
these two features, there are poorly written digits {such as the *5' depicted in
the top-left corner) that prevent a perfect linear separation.

We now run PLA and pocket on the data set and see what happens, Sinee
the data set is not linearly separable, PLA will not stop updating. In fact,
as can be seen in Figure 3.2{a), its behavior can be quite nnstable. When
it is forcibly terminated at iteration 1,000, PLA gives a line that has a poor
By = 2.24% and B,y = 6.37%. On the other hand, if the pocket algorithm is
applied to the same data set, as shown in Figure 3,2(b), we can obtain a line
that has a better By, = 0.45% and a better £, = 1.89%. Cl

3.2 Linear Regression

Linear regression is another useful linear model that applies to real-valied
target functions.! It has a long history in statistics, where it has been studied
in great detail, and has varions applications in social and behavioral sciences,
Here, we discuss linear regression from a learning perspective, where we derive
the main results with minimal assumptions.

Let us revisit our application in credit approval, this time considering a
regression problem rather than a classification problem, Recall that the bank
hins customer records that contain information fields related to personal eredit,
such as annual salary, vears in residence, outstanding loans, ete. Such variables
can be used to learn a linear classifier to decide on credit approval, Instead of
just le':ﬂiili!.‘, it hjj]:tr}' decision (approve or not), the bank also wants to set a
proper eredit Timit for each approved customer. Credit limits are traditionally
determined by human experts. The bank wants to automate this task. as it
did with credit approval,

Rogression, a term inherited from earlier wark in statistics, means v s real-valued,

o ¥

3. Tue Lingan MobpgL 2.2, LiNneAar REGRESSION

L1 pm
£ 3
& i S e
w1 o
= =
= = By
= =
E\
o o =
EIII
Ein
m =T7] T 17111 n = T T Loy

Tteration Number, ¢

piall T
Iteration Number,

; bkl e
{a) PLA (b)) Pocket

Figure 3.2: Comparison of two linear classification algorithms for sepa-
rating digits 1 and 5. B, and E., are plotted as a function of the number
of iterations and below that is how g classifies the training data set, (a)
shows the porformance of PLA and (b) shows the performance of the pocket
algorithm

We can cast this goal as a regression learning problem. The bank uses
historical records to construct a data set D of examples (2. 91), (%2 g2)y o
{(%xn.yw). where x,, is customer information and y,, is the eredit limit set by
one of the human experts in the bank. Note that y, is now a real number
(a positive integer in this case) instead of just a binary value £1. The bank
wants to use a learning algorithm to find a hypothesis g that replicates how
human experts determine the eredit limit.

Sipee there is more than one human expert, and since each expert may
not be perfectly consistent, our target will not be a deterministic fanction
y = fl{x). Instead, it will be a noisy target formalized as a distribution of the
random variable y that comes from the different views of different experts as
well as the variation within the views of each expert. That is, the label g,
comes from some distribution P(y | x) instead of a deterministic function f{x).
Nouetlheless, as we discussed in previous chapters, the nature of the problem
is not changed. We have an unknown distribution P(x,y) that generates

=3

‘3 Tue Lixgarn MobDEL 3.2, LiNEAR RECRESSION

each (X, Yn), and we want to find a hypothesis g that minimizes the error
hetween g{x) and y with respect to that distribution,

The choice of a linear model for this problem presumes that there is a linear
combination of the customer information fields that would properly approx-
imate the credit limit as determined by human experts. If this assumption
does not hold, we cannot achieve a small error with a linear model. We will
deal with this situation when we discuss nonlinear transformation later in the
chapter.

3.2.1 The Algorithm

The linear regression algorithm is based on minimizing the squared error be-
tween h(x) and p.*
Eou(h) = E [(h(x) - 1)?] .

where the expected value is taken with respect to the joint probability distri-
bution Plx,y). The goal is to find a hyvpothesis that achieves a small E_(f).
Since the distribution Pix, y) is unknown, E,.{h) cannot be computed, Sim-
ilar to what we did in classification, we resort to the in-sample version instead,

fie '
h‘i““?] x5 ﬁ Z [Illll:xu:l .|||Ir|]- '

n=1

In linear regression, h takes the form of a linear eombination of the components

of %, That is,
d

hix) = Z Wil; = WX,
i=0
where 5 = 1 and x € {1} x B? as usual, and w € B! For the special case
of linear &, it is very nseful to have a matrix representation of £, (k). First,
define the data matrix X € RY*41) tg be the N x (d + 1) matrix whose rows
are the inputs x,; as row vectors, and define the target vector y € BY to he
the column vector whose components are the target values y,,. The in-sample
error is a function of w and the data X, y:

N
1 a
E":Irl[“r} == ? Z [wa” = y“]‘-
: n=1
1 2
= FlXw—y] (3.3)
= %(wTXT}Iw —2wTX "y +¥"y), (3.4)

where || - || is the Euclidean norm of a vector, and (3.3) follows because the nth
component of the vector Xw — y is exactly w™x,, — 1. The linear regression

2 ind : R ‘
The term ‘linesr regrossion’ has been historically confined to squared error measures,

84

ppE Linear Mopew 3.2, Lanean REGRESSION

Iy

Tz
i

{a) one dimension (line) (k) two dimensions (hyperplane)

Figure 3.3: The solution hypothesis (in blue) of the linear regression algo-
rithm in one and two dimensions. The sum of squared ervors is minimized,

algorithm is derived by minimizing Eilw) over all possible w € Ritl g
formalized by the following optimization problem:

Wi, = argmin B, (w). {3:5)
weRi+!

Figure 3.4 illustrates the solution in one and two dimensions. Since Erua-
tion (3.4) implies that Ej,(w) is differentiable, we can use standard matrix
caleulus to find the w that minimizes Ej,(w) by requiring that the gradient
of B, with respect to w is the zero vector, Le., VEj,(w) = 0. The gradient 15
a {column) vector whose ith component is [VEgR(w)|; = %Ein[wj. By ex-
plicitly computing -2, the reader can verify the following gradient identities,

Vw(wrAw) = (A + AT)w, Vwl(w'b)=h.

These identities are the matrix analog of ordinary differentiation of quadratic
and linear functions. To obtain the gradient of Ej,, we take the gradient of
each term in (3.4} Lo obtain

3
VEpn(w) = %lK"Kw XTy).

Naote that hoth w and VE;,(w) are column vectors. Finally, to get VEiu(w)
to be 0, one should solve for w that satisfies

X' Xw=X"y.

If X*X is invertible, w = X'y where X' = (X"X)71X" is the pseudo-inverse
of X, The resulting wis the unigue optimal solution to (3.3). If X*X is not

bt

3. THE LINEAR MODEL 3.2. LINEAR REGRESSION

invertible, a pseudo-inverse can still be defined, but the solution will not be
unique (see Problem 3.15). In practice, XX is invertible in most of the cases
since N is often much bigger than d + 1, so there will likely be d + 1 linearly
independent vectors x,. We have thus derived the following linear regression
algorithm.

Linear regression algorithm:
1: Construct the matrix X and the vector y from the data set
(x1,%1), -+, (Xn,yn), where each x includes the zo = 1
bias coordinate, as follows

T
X1 n
T
X Y2
X = . y y =
T
TN Y
input data matrix target vector

2: Compute the pseudo-inverse X! of the matrix X. If X*X
is invertible,
X = (X™X)"1X".

3: Return wy, = X'y,

This algorithm is sometimes referred to as ordinary least squares (OLS). It may
seem that, compared with the perceptron learning algorithm, linear regression
doesn’t really look like ‘learning’, in the sense that the hypothesis wy;, comes
from an analytic solution (matrix inversion and multiplications) rather than
from iterative learning steps. Well, as long as the hypothesis wy;, has a decent
out-of-sample error, then learning has occurred. Linear regression is a rare
case where we have an analytic formula for learning that is easy to evaluate.
This is one of the reasons why the technique is so widely used. It should
be noted that there are methods for computing the pseudo-inverse directly
without inverting a matrix, and that these methods are numerically more
stable than matrix inversion.

Linear regression has been analyzed in great detail in statistics. We would
like to mention one of the analysis tools here since it relates to in-sample and
out-of-sample errors, and that is the hat matriz H. Here is how H is defined.
The linear regression weight vector wy, is an attempt to map the inputs X
to the outputs y. However, wy;, does not produce y exactly, but produces an
estimate

y = lein
which differs from y due to in-sample error. Substituting the expression
for wyin (assuming X7X is invertible), we get

¥ =X(X"X)"1X"y.

86

3. THE LINEAR MODEL 3.2. LINEAR REGRESSION

Therefore the estimate ¥ is a linear transformation of the actual y through
matrix multiplication with H, where

H = X(X"X)"'X". (3.6)

Since ¥ = Hy, the matrix H ‘puts a hat’ on y, hence the name. The hat
matrix is a very special matrix. For one thing, H? = H, which can be verified
using the above expression for H. This and other properties of H will facilitate
the analysis of in-sample and out-of-sample errors of linear regression.

Exercise 3.3
Consider the hat matrix H = X(X"X)"'X", where X is an N by d + 1
matrix, and X"X is invertible.
(a) Show that H is symmetric.
(b) Show that H¥ = H for any positive integer K.
(c) If Tis the identity matrix of size N, show that (I — H)X =1-H for
any positive integer K.

(d) Show that trace(H) = d + 1, where the trace is the sum of diagonal
elements. [Hint: trace(AB) = trace(BA).]

3.2.2 Generalization Issues

Linear regression looks for the optimal weight vector in terms of the in-sample
error By, which leads to the usual generalization question: Does this guarantee
decent out-of-sample error oy ? The short answer is yes. There is a regression
version of the VC generalization bound (3.1) that similarly bounds F,ut. In
the case of linear regression in particular, there are also exact formulas for
the expected Eoy and Ei, that can be derived under simplifying assumptions.
The general form of the result is

Eout(9) = Ein(g) + 0(%) :

where E,u(g) and Ei,(g) are the expected values. This is comparable to the
classification bound in (3.1).

Exercise 3.4

Consider a noisy target ¥y = w*"x + ¢ for generating the data, where € is
a noise term with zero mean and o2 variance, independently generated for
every example (x,%). The expected error of the best possible linear fit to
this target is thus 2.

For the data D = {(x1,%1),--.,(Xn,yn)}, denote the noise in Yn as €x
and let € = [e1, €2, . .., n]™; assume that X"X is invertible. By following

{continued on next page)

87

3. Tee Lingarn MoDEL 3.3, LooisTic REGRESSION

] ‘—I"

verted | i-'-'_r;i-'-;”-:‘-;"‘
= LY .

i

the exp

et of e regresion

En{ B (wia)] = 0 (- T) ,

{a) Show that the in-sample estimate of y is given by ¥ = Xw" + He.

(b) Show that the in-sample error vector ¥ — y can be expressed by a
matrix times e. What is the matrix?

(c) Express E;,(wi,) in terms of € using (b), and simplify the expression
using Exercise 3.3(c).

(d) Prove that Ep[Ei.(wiim)] = 7 (1 — 45 using (c) and the indepen-
dence of €1, -+ ,ex. [Hint: The sum of the diagonal elements of a
matrix (the trace} will play a role. See Exercise 3.3(d).]

For the expected out-of-sample error, we take a special case which is easy to
analyze. Consider a test data set Dyuwy = {(x1.01).. ... (x5, un)}, which
shares the same input vectors x,; with D but with a different realization af
the noise terms. Denote the noise in 1, as«, and let €' = [}, 65, ..., el]™.
Define Eyi(wiia) to be the average squared error on Dy

(e) Prove that Ep o [Euexe (wiin)] = 6 (1+ 451).

The special test error Fiew is a very restricted case of the general out-
of-sample error. Some detailed analysis shows that similar results can be
obtained for the general case, as shown in Problem 3.11.

Figure 3.4 illustrates the learning eurve of linear regression nnder the assump-
tions of Exercise 3.4, The best possible linear fit has expected error 72, The
expected in-sample error is smaller, equal to a?(1 - 'I%]:I for N > d+ 1. The
learned linear fit has eaten into the in-sample noise as much as it could with
the d + 1 degrees of freedom that it has at its disposal. This oceurs because
the fitting cannot distinguish the noise from the ‘signal.” On the other hand,
the expected out-ol-sample error is o2(1 4 '4;] }, which is more than the un-
avoidable error of #2, The additional error reflects the drift in wy, due to
fitting the in-sample noise.

3.3 Logistic Regression

The core of the linear model is the ‘signal’ s = w™x that combines the it
variables linearly. We have seen two models based on this signal, and we are
now going to introduce a third. In linear regression, the signal itself is taken
as the output, which is appropriate if you are trying to predict a real response
that could be unbounded. In linear classification, the signal is thresholded
8t zero to produce a +1 output, appropriate for binary decisions. A third
possibility, which has wide application in practice, is to output a probability,

bt

8. Tue Lingan MobEL 3.3. LooisTic REGRESIION

5

IE Eiom
o5 s

£

ﬁ Em

d+ 1 Number of Data Puints, N

Figure 3.4: The learning curve for linear regression.

4 value between 0 and 1. Our new model is called logistic regression. It has
similarities to both previous models, as the output is real (like regression) but
bounded (like classification).

Example 3.2 (Prediction of heart attacks). Suppose we want to predict the
oecurrence of heart attacks based on a person's cholesterol level, blood pres-
sure, age, weight, and other factors. Obviously, we cannot predict a heart
attack with any certainty, but we may be able to predict how likely it is to
oceur given these factors. Therefore, an output that varies continnonsly be-
tween 0 and 1 would be a more suitable model than a binary decision. The
closer y is to 1, the more likely that the person will have a heart attack, [l

3.3.1 Predicting a Probability
Linear classification uses a hard threshold on the signal s = w'x,
hix) = sign(w'x).
while linear regression uses no threshold at all,
hix) =w'x

In our new model, we need something in between these two cases that smoothly
restricts the output to the probability range [0,1]. One choice that aceom-
plishes this goal is the logistic regression model,

hix) = lw'x), —

a*

where # is the so-called logistee function #(s) = 5 whose output is between 0

and 1.

et

29

3. Tue LiNngarn MobpEL 3.3. Loocistic REGRESS1ION

The output can be interpreted as a probabil-
ity for a binary event (heart attack or no heart
attack, digit *1" versus digit ‘5, etc.). Linear
classification also deals with a binary event, but
the difference is that the ‘classification’ in logis-
tic regression s allowed to be uncertain, with
intermediate values between (0 and 1 reflecting
this uncertainty. The logistic function # is referred to as a soft threshold, in
coutrast to the hard threshold in classification. It is also called a sigmoid
because its shape looks like a fattened out ‘s’

Exercise 3.5
Another popular soft threshold is the hyperbolic tangent
t!.'ﬂh{.lj = E:l-'.
ef e

(a) How is tanh related to the logistic function 67 [Hint: shift and scale]

(b) Show that tanh(s) converges to a hard threshold for large s, and
converges to no threshold for small |s|. [Hint: Formalize the figure
below. |

linear

A —————————

tanh

hard threshold

The specific formula of §(s) will allow us to define an error measure for learning
that has analytical and computational advantages, as we will see shortly. Let
us first look at the target that logistic regression is trying to learn. The target
i5 a probability, say of a patient being at risk for heart attack, that depends
on the input x (the characteristics of the patient). Formally, we are trying to
learn the target function

flx) =Py = +1| x].

The data does not give us the value of f explicitly. Rather, it gives us samples
generated by this probability, e.g., patients who had heart attacks and patients
who didn’t. Therefore, the data is in fact generated by a nolsy target Py | x),

fix] for y = 41;
P ot i
(0| x {] Yy (3.7)

To learn from such data, we need to define a proper error measure that gauges
how close a given hypothesis h is to f in terms of these noisy +1 examples.

)

3. Tue Linegar MobDEL . LOGISTIC REGRESSION

Error measure. The standard error measure e(fi(x).y) used in logistic re-
gression is based on the notion of bikelihood; how ‘likely’ is it that we would get
this output y from the input x if the target distribution P(y | x) was indeed
captured by our hypothesis hix)? Based on (3.7), that likelihood would be

hix) for iy = <+1;

Flrix= {l—h[x} for y = —1.

We substitute for h{x) by its value #{w™x), and use the fact that 1 — 8(s) =
#{—5) (easy to verify) to get

Ply | x) = 6y w'x). (3.8)

One of our reasons for choosing the mathematical form 8(s) = e* /(1 + ¢*) is
that it leads to this simple expression for Py | x).

Sinee the data points (x5,)..... (X5, yy) are independently generated.
the probability of getting all the y,’s in the data set from the correspond-
ing x,,"s would be the product

N
[T Ptun | %a),

=]

The method of marimum likelihood selects the hypothesis h which maximizes
this probability.* We can equivalently minimize a more convenient guantity,

_l| ﬁp[. |) —iih‘(_l_
i 6 S £ el VT

sinee ‘- % In(-)" is a monotonically decreasing funetion. Substituting with
Equation (3.8), we would be minimizing

N

1 1

=i it b i

N ; Yy W%,)

with respect to the weight vector w. The fact that we are manimizing this
quantity allows us to treat it as an ‘error measure.’ Substituting the func-
tional form for Ay, w™x,,) produces the in-sample error measure for logistic
regression,

N
| = r
Ein(w) = 5 Z; In (147"). (3.9)
The implied pointwise error measure is e(h{x,), tn) = In(| 4o~ UnW %). Nut.ine
that this error measure is small when y,w'x, is large and positive, which
wonld imply that sign{w’x,) = y,. Therefore. as our intuition would expect,
the error measure encourages w to ‘classify’ each x, correctly.

3 Although the method of maximum likelihood is intuitively plausible, its rigorous justi-
fication as an inference tool continues to be discussed in the statistics comnmunity.

|

3. Tue Lingar MopeL 3.3, LoosTio REGRESSION

E" I &‘ = o Pt A iy = = = :-'.-

(a) MmMﬁuhhﬁmﬁmﬂ&umpmﬁnam&y

target P(y | x) with candidate hypothesis h, show that the maximum
likelihood method reduces to the task of finding i that minimizes

1
; 1 So T
infw) = g[yﬂ +1jln ——— h{ + Iy i]in TS
(b) For the case h(x) = #{w'x), argue that minimizing the in-sample
error in part (a) is equivalent to minimizing the one in (3.9).

For two probability distributions {p. 1 — p} and {g,1— ¢} with binary out-
comes, the cross-entropy (from information theory) is

1 1
log = + (1 —-p) log ~——.
plog o (.1'-*}“5]_“jr

The in-sample error in part (a) corresponds to a cross-entropy error measure
on the data point (X, ys), with p= [, = +1] and g = h(x.).

For linear classification. we saw that minimizing £, for the perceptron is a
combinatorial optimization problem; to solve it, we introduced a number of al-
gorithms such as the perceptron learning algorithn and the pocket algorithm.
For linear regression, we saw that training can be done using the analvtic
peendo-inverse algorithm for minimizing E, by setting VE|,,(w) = 0. These
algorithms were developed based on the specific form of linear classification or
linear regression, so none of them would apply to logistic regression.

To train logistic regression, we will take an approach similar to linear re-
gression in that we will try to set VE,,(w) = 0. Unfortunate sy, unlike the case
of linear regression, the mathematical form of the gradient of £, for logistic
regression is not easy to manipulate, so an analvtic solution is not feasible,

Exercise 3.7
For logistic regression, show that

VEu EWJ

yrlxu
Z 14 etmwi=q

1 T
g - E —lnXnf{ 1w %),

=l

Argue that a 'misclassified” example contributes more to the gradient than

-2 correctly classified one.

Instead of analytically setting the gradient to zero, we will it rafively set it Lo
2ero. To do so, we will introduce a new algorithm, gradient descent. Gradient

l;'}l

3. Tue Lingan Mopeu 3.3, LocisTic REGRESSION

descent is a very general algorithm that can be used to train many other
learning models with smooth error measures. For logistic regression, gradient
descent has particularly nice properties,

3.3.2 Gradient Descent

Gradient descent is a general technique for

minimizing a twice-differentiable function, such

as Fi,(w) in logistic regression. A useful phys-

ical analogy of pradient descent is a ball rolling

down a hilly surface. If the ball is placed on

g hill, it will roll down, coming to rest at the

bottom of a valley. The same basic idea under-

lies gradient descent. FE,(w) 15 a ‘surface’ in

a high-dimensional space. At step), we start

somewhere on this surface, at w(), and try to

roll down this surface, thereby decreasing Ej,. One thing which you imme-
diately notice from the physical analogy is that the ball will not necessarily
come to rest in the lowest valley of the entire surface. Depending on where
vou start the ball rolling, you will end up at the bottom of one of the valleys -
a loeal minimum. In general, the same applies to gradient descent, Depending
on your starting weights, the path of descent will take you to a loeal minimum
in the error surface.

A particular advantage for logistic regression
with the cross-entropy error is that the picture
looks much nicer. There is only one valley! So,
it does not matter where yvou start yvour ball
rolling, it will always roll down to the same
(unique) global mindmum, This is a consequence
of the fact that Fi(w) is a conver function
of w, a mathematical property that implies a
single ‘valley” as shown to the right. This means Weights, w
that gradient descent will not be trapped in lo-
cal minima when minimizing such convex error measures,

Let's now determine how to ‘roll’ down the Ej,-surface. We would like to
take a step in the direction of steepest descent, to gain the biggest bang for
our buck. Suppose that we take a small step of size 5 in the direction of a unit
vector v. The new weights are w(0) + nv. Since 7 is small, using the Taylor
expansion to first order, we compute the change in Ej, as

In-sample Error, £,

4

AFy = Eun(wlD)+ngv) = Eiy(w(0))
= NVELIwl0)) v+ 00 —_
= —n||VEL(w(0)]]

*1n fact, the squared in-sample error in linear regression is also convesx, which is why the
analytic solution found by the pseudo-inverse is guaranteed to have optimal in-sample error.

93

3. Toe Lingar MopeL 3.3, LoaisTic REGRESSION

where we have ignored the small term O(r?). Since v is a unit vector, equality
holds if and only if
VEi(w(0])

= i BV (3.10)
IV Eiw (w (D)) :

This direction, specified by v. leads to the largest decrease in Ej, for a given
step size 1.

Exercise 3.8

The claim that v is the direction which gives largest decrease in Ej,, only
holds for small 7. Why?

There is nothing to prevent us from continuing to take steps of size 1. re-
evaluating the direction v; at each iteration { = 0,1,2,.... How large a step
should one take at each iteration? This is a good question, and to gain some
insight, let’s look at the following examples.

5 5 5
ﬁ! < = small 7
i : .
= k|]
Weights, w - Weights, w Weights, w
1 too small 1 too large variable 5 — just right

A fixed step size (if it is too small) is inefficient when vou are far from the
local minimum. On the other hand, too large a step size when vou are close to
the minimum leads to bouncing around. possibly even increasing E;, . Ideally,
we would like to take large steps when far from the minimum to get in the
right ballpark quickly, and then small (more careful) steps when close to the
minimum. A simple heuristic can accomplish this: far from the minimum.
the norm of the gradient is typically large, and close to the minimum, it is
small. Thus, we could set 5, = n||VEi,|| to obtain the desired behavior for
the variable step size; choosing the step size proportional to the norm of the
gradient will also conveniently cancel the term normalizing the unit veetor v in
Equation (3.10), leading to the fired learning rate grodient descent algorithim
for minimizing E|,, (with redefined 0l

o4

3. Tne Lingarn MoDEL 3.3. LocisTic REGRESSION

Fixed learning rate gradient descent:
1 Initialize the weights at time step ¢ = 0 to w(0).
2 fort=0,12,...do
4 Compute the gradient g, = VEu,(wi(t)).
4: Set the direction to move, v = —g:.
5 Update the weights: w(t + 1) = wi(i] + nv;.
6: lterate to the next step until it is time to stop.
7: Return the final weights.

In the algorithm, v, is a direction that is no longer restricted to unit length,
The parameter 9 (the learning rate) has to be specified. A typically good
choice for n is around 0.1 (a purely practical observation). To use gradient
descent, one must compute the gradient. This can be done explicitly for logistie
regression (see Exercise 3.7).

Example 3.3. Gradient descent is a general alporithm for minimizing twice-
differentiable functions. We can apply it fo the logistie regression in-sample
error to return weights that approximately minimize

N
Einlw) = %Z In (1 +,,=—r.r..w'x..) "
=l

Logistic regression algorithm:
1; Initialize the weights at time step ¢ = (I to w(().
2 fort=0,1,2.... do
3 Compute the gradient

N

1 HnXy
B =~ N E 1 4 ¢ ¥nWlEhe,
n=1
4: Set the direction to move, v = —E¢.

=

Update the weights: w{t + 1) = w(f) 4 nv;.
G: Iterate to the next step until it is time to stop.
- Return the final weights w.

=]

O

Initialization and termination. We have two more loose ends to tie: the
first is how to choose wi(0), the initial weights, and the second is how to
set the criterion for “...until it is time to stop” in step 6 of the gradient
descent algorithm. In some cases, such as logistic regression. initializing the
weights w(0) as zeros works well. However, in general, it is safer to initialize
the weights randomly, so as to avoid getting stuck on a perfectly symmetric
hilltop. Choosing each weight independently from s Normal distribution with
zero mean and small variance usually works well in practice.

05

3. THE LINEAR MODEL 3.3. LogGIsTIC REGRESSION

That takes care of initialization, so we now move on to termination. How
do we decide when to stop? Termination is a non-trivial topic in optimization.
One simple approach, as we encountered in the pocket algorithm, is to set an
upper bound on the number of iterations, where the upper bound is typically
in the thousands, depending on the amount of training time we have. The
problem with this approach is that there is no guarantee on the quality of the
final weights.

Another plausible approach is based on the gradient being zero at any min-
imum. A natural termination criterion would be to stop once ||g;|| drops below
a certain threshold. Eventually this must happen, but we do not know when
it will happen. For logistic regression, a combination of the two conditions
(setting a large upper bound for the number of iterations, and a small lower
bound for the size of the gradient) usually works well in practice.

There is a problem with relying solely on
the size of the gradient to stop, which is that
you might stop prematurely as illustrated on the
right. When the iteration reaches a relatively
flat region (which is more common than you {
might suspect), the algorithm will prematurely
stop when we may want to continue. So one so- Weights, w
lution is to require that termination occurs only
if the error change is small and the error itself is small. Ultimately a combina-
tion of termination criteria (a maximum number of iterations, marginal error
improvement, coupled with small value for the error itself) works reasonably
well.

Ein

Example 3.4. By way of summarizing linear models, we revisit our old friend
the credit example. If the goal is to decide whether to approve or deny, then
we are in the realm of classification; if you want to assign an amount of credit
line, then linear regression is appropriate; if you want to predict the probability
that someone will default, use logistic regression.

Approve | Cléssiﬁcation Error
or Deny L Perceptron PLA, Pocket,. .. i

Amount Linear Regression 1 Squared Error
| of Credit € Pseudo-inverse

1 H =
Probability s s . Cross-entropy Error
of Default | Logistic Regression ' Gradient descent

The three linear models have their respective goals, error measures, and al-
gorithms. Nonetheless, they not only share similar sets of linear hypotheses,
but are in fact related in other ways. We would like to point out one impor-
tant relationship: Both logistic regression and linear regression can be used in
linear classification. Here is how.

Logistic regression produces a final hypothesis g(x) which is our estimate
of Ply = +1 | x]. Such an estimate can easily be used for classification by

i Analysis
S |

96

3. THE LINEAR MODEL 3.3. Locistic REGRESSION

setting a threshold on g(x); a natural threshold is 1, which corresponds to
classifying +1 if +1 is more likely. This choice for threshold corresponds to
using the logistic regression weights as weights in the perceptron for classifica-
tion. Not only can logistic regression weights be used for classification in this
way, but they can also be used as a way to train the perceptron model. The
perceptron learning problem (3.2) is a very hard combinatorial optimization
problem. The convexity of FEi, in logistic regression makes the optimization
problem much easier to solve. Since the logistic function is a soft version of
a hard threshold, the logistic regression weights should be good weights for
classification using the perceptron.

A similar relationship exists between classification and linear regression.
Linear regression can be used with any real-valued target function, which
includes real values that are 1. If wyj x is fit to 1 values, sign(wj; x) will
likely agree with these values and make good classification predictions. In
other words, the linear regression weights wyi,, which are easily computed
using the pseudo-inverse, are also an approximate solution for the perceptron
model. The weights can be directly used for classification, or used as an initial
condition for the pocket algorithm to give it a head start. il

Exercise 3.9

Consider pointwise error measures eciass(s, y) = [y # sign(s)], esq(s,9) =
(y = 5)?, and ejog(s,y) = In(1 + exp(—ys)), where the signal s = w'x.

(a) Fory = +1, plot eciass, €:q and 5€10¢ versus s, on the same plot.

(b) Show that eciass(s5,y) < esq(s,y), and hence that the classification
error is upper bounded by the squared error.

(c) Show that eciass(s,4) < 15€10g(5,y), and, as in part (b), get an
upper bound (up to a constant factor) using the logistic regression

error.

These bounds indicate that minimizing the squared or logistic regression
error should also decrease the classification error, which justifies using the
weights returned by linear or logistic regression as approximations for clas-
sification.

Stochastic gradient descent. The version of gradient descent we have de-
scribed so far is known as batch gradient descent — the gradient is computed
for the error on the whole data set before a weight update is done. A sequen-
tial version of gradient descent known as stochastic gradient descent (SGD)
turns out to be very efficient in practice. Instead of considering the full batch
gradient on all N training data points, we consider a stochastic version of
the gradient. First, pick a training data point (x,,y,) uniformly at random
(hence the name ‘stochastic’), and consider only the error on that data point

97

3. THE LINEAR MODEL 3.3. LoGIisTic REGRESSION

(in the case of logistic regression),
en(w)=1n (1 + e_y"wa") .

The gradient of this single data point’s error is used for the weight update in
exactly the same way that the gradient was used in batch gradient descent.
The gradient needed for the weight update of SGD is (see Exercise 3.7)

_ —YnXn
T 14 eynwixa

Ve, (w) ,
and the weight update is w < w —nVe, (w). Insight into why SGD works can
be gained by looking at the expected value of the change in the weight (the
expectation is with respect to the random point that is selected). Since n is
picked uniformly at random from {1,..., N}, the expected weight change is

LN
—n- N ;Ven(w).

This is exactly the same as the deterministic weight change from the batch
gradient descent weight update. That is, ‘on average’ the minimization pro-
ceeds in the right direction, but is a bit wiggly. In the long run, these random
fluctuations cancel out. The computational cost is cheaper by a factor of N,
though, since we compute the gradient for only one point per iteration, rather
than for all N points as we do in batch gradient descent.

Notice that SGD is similar to PLA in that it decreases the error with re-
spect to one data point at a time. Minimizing the error on one data point may
interfere with the error on the rest of the data points that are not considered
at that iteration. However, also similar to PLA, the interference cancels out
on average as we have just argued.

Exercise 3.10

(a) Define an error for a single data point (x,,,%x) to be
en (W) = max(0, —y, W X,).

Argue that PLA can be viewed as SGD using e,,.
(b) For logistic regression with a very large w, argue that minimizing Ein
using SGD is similar to PLA. This is another indication that the lo-

gistic regression weights can be used as a good approximation for
classification.

SGD is successful in practice, often beating the batch version and other more
sophisticated algorithms. In fact, SGD was an important part of the algorithm
that won the million-dollar Netflix competition, discussed in Section 1.1. It
scales well to large data sets, and is naturally suited to online learning, where

98

3. THE LINEAR MODEL 3.4. NONLINEAR TRANSFORMATION

a stream of data present themselves to the learning algorithm sequentially.
The randomness introduced by processing one data point at a time can be a
plus, helping the algorithm to avoid flat regions and local minima in the case
of a complicated error surface. However, it is challenging to choose a suit-
able termination criterion for SGD. A good stopping criterion should consider
the total error on all the data, which can be computationally demanding to
evaluate at each iteration.

3.4 Nonlinear Transformation

All formulas for the linear model have used the sum
d
wix = Z W5 T (3.11)
i=0

as the main quantity in computing the hypothesis output. This quantity is
linear, not only in the z;’s but also in the w;’s. A closer inspection of the
corresponding learning algorithms shows that the linearity in w;’s is the key
property for deriving these algorithms; the x;’s are just constants as far as the
algorithm is concerned. This observation opens the possibility for allowing
nonlinear versions of xz;’s while still remaining in the analytic realm of linear
models, because the form of Equation (3.11) remains linear in the w; param-
eters.

Consider the credit limit problem for instance. It makes sense that the
‘years in residence’ field would affect a person’s credit since it is correlated with
stability. However, it is less plausible that the credit limit would grow lLnearly
with the number of years in residence. More plausibly, there is a threshold
(say 1 year) below which the credit limit is affected negatively and another
threshold (say 5 years) above which the credit limit is affected positively. If z;
is the input variable that measures years in residence, then two nonlinear
‘features’ derived from it, namely [x; < 1] and [z; > 5], would allow a linear
formula to reflect the credit limit better.

We have already seen the use of features in the classification of handwritten
digits, where intensity and symmetry features were derived from input pixels.
Nonlinear transforms can be further applied to those features, as we will see
shortly, creating more elaborate features and improving the performance. The-
scope of linear methods expands significantly when we represent the input by
a set of appropriate features.

3.4.1 The Z Space

Consider the situation in Figure 3.1(b) where a linear classifier can’t fit the
data. By transforming the inputs z1, 22 in a nonlinear fashion, we will jbe able
to separate the data with more complicated boundaries while still using the

99

3. TueE Lingan MobgL 3.4, NONLINEAR TRANSFORMATION

simple PLA as a building block. Let's start by looking at the circle in Fig-
ure 3.5(a), which is a replica of the non-separable case in Figure 3.1(b). The
vircle represents the following equation:

o + 23 =06

That is, the nonlinear hypothesis fi{x) = sign{—0.6 + &7 + x3) separates the

data set perfectly. We can view the hypothesis as a finear one after applying

a nonlinear transformation on x. In particular, consider =z = 1, z; = &7 and
5

Zg = L5,

_ - 2 2
hix) = sign kﬂ_urml"_}'#—i- 1 -:wi-'+ 1 \if-f
Tty 1 bl) T2 o]
/
1
= sign | [ty tiy 2] | 7
I il P
\

where the vector 2 is obtained from x through a nonlinear transform @,
z = P(x).

We can plot the data in terms of 2 instead of x, as depicted in Figure 3.5(b).
For instance, the point x; in Figure 3.5(a) is transformed to the point z; in
Figure 3.5(h) and the point x5 is transformed to the point z. The space Z,
which contains the z vectors, is referred to as the feature space since its coor-
dinates are higher-level features derived from the raw input x. We designate
different quantities in 2 with a tilde version of their counterparts in ', e.g.,
the dimensionality of 2 is d and the weight vector is w.* The transform ®
that takes us from X' to Z is called a feature transform, which in this case is

bix) = {l,rf..irg}. (3.12)

In general, some points in the Z space may not be valid transforms of any
x € X, and multiple points in X may be transformed to the same z € Z,
depending on the nonlinear transform &,

The usefulness of the transform above is that the nonlinear hypothesis b
(circle) in the X space can be represented by a linear hypothesis (line) in
the Z space. Indeed, any linear hypothesis i in z corresponds to a {possibly
nonlinear) hypothesis of x given by

hix) = hid(x)).

52 = {1} x RY, where d = 2 in this case. We treat Z as d-dimensional since the added
coordinate) = 1 is fixed.

LK)

3. Tne Linpak Mopew 3.4, NoONLINEAR TRANSFORMATION

0 W 1
(b} Transformed data in Z-space

1
z=(x) = [r?]
3

Figure 3.5: (a) The original data set that is not linearly separable, but
separable by a circle, (b) The transformed data set (hat is linearly separabla
in the Z space. In the fizure, x; maps to 2y and xs maps to zy; the cireular

separator in the X-space maps to the linear separator in the Z-space,

The set of these hypotheses h is denoted by He. For instance, when using
the feature transform in (3.12), each h € Hg is a quadratic curve in &X' that
corresponds to some line h in Z.

Exercise 3.11

Consider the feature transform & in (3.12). W
does a hyperplane W in Z correspond to in the f

picture that illustrates an example of each case.
(a) oy = 0,12 <0
(b) 1By > 0,15 =0
(&) 1 3= 0,10 = hiig < 0)
(d) 1 > 0,1 > 0,100 > 0

Because the transformed data set (z,p), --- , (zZn,yy) in Figore 3.5(b) is
linearly separable in the feature space Z, we can Ehpph PLA on the transformed
data set to obtain Wp,., the PLA solution, which gives us a final hypothesis
g{x) = sign(Ww!,,z) in the X space, where 2z = ®(x). The whole process of
applyving the feature transform before running PLA for linear classification is
depicted in Figure 3.6.
The in-sample error in the input space X' is the same as in the feature
space 2, so Ei.(g) = 0. Hyperplanes that achieve Eiy(Weea) = 0 in Z cor
respond to separating curves in the original input space A For instance, as

101

3. Tug Linean Mopew 3.4, NoNuNEAR TRANSFORMATION

»
<] N
® o] =
o 9 x x
o i (o] » - ®
ote 3
o o *
» x o
| % ®x > %0
1. Original data 2. Transforin the data
X € i Z, = "I'LK“]' € =

4. Classify in X-space 3. SBeparate data in Z-space
glx) = gl®(x)) = sign(w"P(x)) glz) = sign(w'z)

Figure 3.6: The nonlinear transform for separating non-separable data,

shown above, the PLA may find a different line wp., . = (—0.6,0.6,1) that also
separates the transformed data set (z,91), -+, 2y, yv). The corresponding
hiypothesis g(x) = sign(—0.6 + 0.6 - 27 +) will separate the original data set
(Xpag1)yer, (%x,4n). In this case, the decision boundary is an ellipse in Y.

How does the feature transform affect the VC bound (3.1)7 If we honestly
decide on the transform @ before seeing the data, then with probability at
least 1 — 4§, the bound (3.1) remains true by using dy.(Hg) as the VO dimen-
sion. For instance, consider the feature transform @ in (3.12). We know that
Z={1}1=R% Since M, 1= the perceptron in 2, doo(Ha) < 3 (the < is because
some points 2 € Z may not he valid transforms of any x, so some dichotomies
may not he realizable), We can then substitute N, dy.(Hqg), and § into the
VC bound. After running PLA on the transformed data set. if we suceeed in

102

3. Tue Lingar Mooin d.4. NoNLneEAR TRANSFORMATION

getting some g with Eip(g) = 0, we can claim that g will perform well out of
sample,

It is very important to understand that the claim above is valid ouly if you
decide on @ before seeing the data or trying any algorithms. What if we first
try using lines to separate the data, fail, and then use the eircles? Then we
are effectively using a madel that contains both lines and cireles; and d, is
no longer 3.

Exercise 3.12
We know that in the Euclidean plane, the perceptron model # cannot
implement all 16 dichotomies on 4 points. That is, my(4) < 16. Take the
feature transform @ in (3.12). A
(a) Show that m, (3) = 8.
(b) Show that ma, (4) < 16.
(c) Show that ms s, (1) = 16.

That is, if you used lines, .. = 3; if you used circles, dy = 3; if you used
lines and circles, dye = 3. i et

Worse yet, if you actually look at the data (e.g. look at the points in Fig-
ure 3.1(a)) before deciding on a suitable ®, you forfeit most of what you
learned in Chapter 2 &). You have inadvertently explored a huge hypothesis
space in vour mind to come up with a specific @ that would work for this data
set. If you imvoke a generalization bound now, you will be charged for the VC
dimension of the full space that you explored in vour mind, not just the space
that & creates,

This does not mean that @ should be chosen blindly, In the credit lmit
prablem for instance, we suggested nonlinear features based on the ‘years in
residence’ field that may be more suitable for linear regression than the raw
input. This was based on our understanding of the problem, not on smooping'
into the training data. Therefore, we pay no price in terms of generalization,
and we may well gain a dividend in performance because of a good choice of
features.

The feature transform @ can be general, as long as it is chosen before seeing
the data set (as if we cannot emphasize this enough). For instance, you may
have noticed that the feature transform in (3.12) only allows us to get very
limited types of quadratic curves. Ellipses that do not center at the origin,
in X cannot correspond to a hyperplane in 2. To get all possible quadratic
curves in X, we could consider the more general feature transform & = By(x),

Da(x) = (1,1, Tz, a7, 2120, T3), (3.13)

which gives us the flexibility to represent any quadratic curve in A by ahy=
perplane in 2 (the subscript 2 of @ is for polynomials of degree 2 - quadratic
curves). The price we pay is that 2 is now five-dimensional instead of two-
dimensional, and hence d,. is doubled from 3 to 6.

103

(o1~ bz =1
circle (@1 — 3)* + (zz — 4)* = 1.
{e) Thpelipas aler =35 + (&2 4" =1,
(d) The hyperbola (i —) — (s —4)° = 1.
(e) The ellipse 2(x; + w2 — 3)* + (r1 —2a —4)* = 1.
] ﬂ} mu‘n&ﬂrt +xa=1.

One may further extend $; to a feature transform &4 for cubic curves in X,
or more generally define the feature transform @, for degree-QQ curves in V.
The feature transform @, is called the Qth erder polynomial transform.

The power of the feature transform should be used with care. It may
not be worth it to insist on linear separability and employ a highly complex
surface to achieve that. Consider the case of Figure 3.1(a). If we insist on a
feature transform that linearly separates the data, it may lead to a significant
increase of the VO dimension. As we see in Figure 3.7, no line can separate the
training examples perfectly, and neither can any quadratic nor any third-order
polynomial curves. Thus, we need to use a fourth-order polynomial transform.

Pa: x> (1,21, 23,27, 213, 25, 27, afwa, 2123, o8, 28, ¥zs, 22d, 2y, 28).

If you look at the fourth-order decision boundary in Figure 3.7(b). vou don't
need the VO analysis to tell you that this is an overkill that is unlikely to
generalize well to new data. A better option would have been to ignore the two
misclassified examples in Figure 3.7(a), separate the other examples perfectly
with the line, and accept the small but nonzero Ey,. Indeed, sometimes our
best het is to go with a simpler hypothesis set while tolerating a small £,

While our discussion of feature transforms has focused on classification
problems, these transforms can be applied equally to regression problems,
Both linear regression and logistic regression can be implemented in the feature
space Z instead of the input space X, For iustance, linear regression is often
coupled with a feature transform to perform nonlinear regression. The N
by d + 1 input matrix X in the algorithm is replaced with the N by o + 1
matrix Z, while the output vector y remains the same.

3.4.2 Computation and Generalization

Although using a larger @ gives us more flexibility in terms of the shape of
decision bonmdaries in X, there is 4 price to he paid. Computation s one
issue, and generalization is the other.

Computation is an issue because the feature transform Py maps a two-
dimensional vector x to d = E{@ dimensions, which increases the memory

104

3. Tue Lingar MopeL 3.4, Nonuneai THANSPORMATION

{a) Linear fit (b} 4th order polynomial fit

Figure 3.7: Niustration of the nonlinear transform using a data set that
is not linearly separable; (a) a line separates the data after omitting o few
points, (h) a fourth-order polynomial separates all the points.

and computational costs. Things conld get worse if x is in a higher dimension

to hegin with.

Exercise 3.14
Consider the Qth order polynomial tr
ﬂuﬂmﬂmﬂﬁ#ﬂtﬁefﬂmmm

20 = 1). Evaluate your result on d € {2,3,5,10} a

The other important issue is generalization. If @ is the feature transform of

a two-dimensional input space, there will be d= M dimensions in Z, and
dvolHa) can be as high as 9-[-5“— + 1. This means that the second term in
the VC bound (3.1) can grow ‘ilglllfl{ antly. In other words, we would have a
weaker guarantee that £, will be small. For instance, if we use = by,
the VC dimension of Hq could be as high as iﬂ.".i!!._ +1 = 1326 instead of the
original d,. = 3. Applying the rule of thumb that tlie amount of data needed
is proportional to the VO dimension, we would need hundreds of times more
data than we would if we didn’t use a feature transform, in order to ﬂ-chJEW
the same level of generalization error,

Exercise 3.15

105

3. The Linear MobeL 3.4. NONLINEAR THANSFORMATION

g (x) = (1),
(a) Prove that dy.(Ha) = 2.
(b) Prove that dy. (U Ha) < 2(log, d + 1).

Hy is called the decision stump model on dimension k.

The problem of generalization when we go to high-dimensional space is some-
times balanced by the advantage we get in approximating the target better, As
we have seen in the case of using quadratic curves instead of lines, the trans-
formed data became linearly separable, reducing Ej,, to (1. In general, when
choosing the sppropriate dimension for the feature transform, we cannot avoid
the approximation-generalization tradeofl,

higher d better chance of being linearly separable (B, |1 doe T
levwer of possibly not linearly separable (B, 1) i |

Therefore, choosing a feature transform before seeing the data is a non-trivial
task. When we apply learning to a particular problem, some understanding
of the problem can help in choosing features that work well. More generally,
there are some guidelines for choosing a suitable transform, or a suitable model,
which we will discuss in Chapter 4.

Exercise 3.16
Write down the steps of the algorithm that combines @ with linear re-

gression. How about using @y instead? Where is the main computational
bottleneck of the resulting algorithm?

Example 3.5. Let's revisit the handwritten digit recognition example. We
can try a different way of decomposing the big task of separating ten digits
to smialler tasks. One decomposition is to separate digit 1 from all the other
digits. Using intensity and symmetry as our input variables like we did before,
the scatter plot of the training data is shown next. A line can roughly separate
digit 1 from the rest, but a more complicated curve might do hetter.

106

3. Tue Lingarn MobDEL 3.4, Nonuneanr TRANSFORMATION

Syummetry

X pol 1
01

Average [utensity

We use linear regression (for classification), first without any feature transform.
The results are shown below (LHS). We get Ej, = 2:13% and E,;; = 2.38%.

Symmetry
Symmitry

Average Intensity Average Intensity
Linear model 3rd order polynomial model
Ey = 2.13% Ein = 1.75%
Eou: = 2.38% =

Classification of the digits data (‘1" versus ‘not 1°) using linear anil
third order polynomial models.

When we run linear regression with @5, the third-order polynomial transform,
we obtain a better fit to the data, with a lower Ej, = 1.75%. The result is
depicted in the RHS of the figure. In this case, the better in-sample fit also
resulted in a better ont-of-sample performance, with Eyy = 1.87%. o

Linear models, a final pitch. The linear model (for classification or e
gression) is an aften overlooked resource in the arena of learning from cdata.
Since efficient learning algorithms exist for linear models, they are 11'-'“’_ GYer-
head. They are also very robust and have eond generalization properties, A

107

‘o wrong. If vou get a thanjmamdnm Ifyuu
dhmtmtagoodmughﬁththa&m&mddﬂddntngnﬁwummemmplex
model, you will pay a price in terms of the VC dimension as we have seen in
Exercise 3.12, but the price is modest,

108

3. Tue Linearn MoDEL 3.5, PROBLEMS

3.5 Problems

Problem 3.1 Consider the double semi-circle "toy” learning task below.

thk

There are two semi-circles of width th& with inner radius rad, separated by
sep as shown (red is —1 and blue is +1). The center of the top semi-circle
is aligned with the middle of the edge of the bottom semi-circle. This task
is linearly separable when sep = 0, and not so for sep < (0. Set rad = 10,
Uil = 5 and sep = 5, Then, generate 2,000 examples uniformly, which means
you will have approximately 1, 000 examples for each class.

{a) Run the PLA starting from w = O until it converges. Plot the data and
the final hypothesis.

(b) Repeat part (a) using the linear regression (for classification) to obtain w,
Explain your observations,

Problem 3.2 For the double-semi-circle task in Problem 3.1, vary sep in
the range {0.2,0.4,...,5}. Generate 2 [I{) examples and run the PLA starting
with w = 0. Record the number of iterations PLA takes to converge.

Plot sep versus the number of iterations taken for PLA to converge. Explain
your observations. [Hint: Problem 1.3.]

Problem 3.3 For the double-semi-circle task in Problem 3.1, set sep = =5
and generate 2, 000 examples,

[a) What will happen if you run PLA on those examples?

{b) Run the pocket algorithm for 1,000, 00K iterations and plat iy versus
the iteration number .

{e) Plot the data and the final hypothesis in part (b).

{continued on next page]

109

3. THE LINEAR MODEL 3.5. PROBLEMS

(d) Use the linear regression algorithm to obtain the weights w, and compare
this result with the pocket algorithm in terms of computation time and
quality of the solution.

(e) Repeat (a) and (b) with a 3rd order polynomial feature transform.

Problem 3.4 In Problem 1.5, we introduced the Adaptive Linear Neu-
ron (Adaline) algorithm for classification. Here, we derive Adaline from an
optimization perspective.

(a) Consider En(w) = max(0,1 — y,w"x,)?. Show that E,.(w) is continu-
ous and differentiable. Write down the gradient V£, (w).

(b) Show that E,(w) is an upper bound for [sign(w™xy) # yn]. Hence,
L Zi\’:l En(w) is an upper bound for the in-sample classification er-
ror Ein(w).

(c) Argue that the Adaline algorithm in Problem 1.5 performs stochastic
gradient descent on £ 3" E, (w).

Problem 3.5

(a) Consider
En(w) = [sign(w"xa) # yn] [yn — w'xa.
Show that E,(w) is continuous and differentiable except when
Yn = W' Xy,

(b) Show that E,(w) is an upper bound for [sign(w"xs) # y.]. Hence,
+ Zi\f:l En(w) is an upper bound for the in-sample classification er-
ror Ein(w).

(c) Apply stochastic gradient descent on + Zivzl E,(w) (ignoring the sin-
gular case of w"x,, = y,,) and derive a new perceptron learning algorithm.

Problem 3.6 Derive a linear programming algorithm for fitting a lin-
ear model for classification using the following steps. A linear program is an
optimization problem of the following form:
min c'z
z
subject to Az < b.
A, b and c are parameters of the linear program and z is the optimization vari-

able. This is such a well studied optimization problem that most mathematics
software have canned optimization functions which solve linear programs,

(a) For linearly separable data, show that for some W, yn(w'x,) > 1 for
n=1,...,N.

110

3. THE LINEAR MODEL 3.5. PROBLEMS

(b) Formulate the task of finding a separating w for separable data as a linear
program. You need to specify what the parameters A, b, ¢ are and what
the optimization variable z is.

(c) If the data is not separable, the condition in (a) cannot hold for every n.
Thus introduce the violation &, > 0 to capture the amount of violation

for example x,,. So, forn=1,..., N,
Yn(W'xn) > 1-6,
& 2 0.

Naturally, we would like to minimize the amount of violation. One intu-
itive approach is to minimize Zi\;l &n, ie., we want w that solves

N
n=1

subject to Yo (W'x,) > 1 —&,,
6” Z 07
where the inequalities must hold for n = 1,..., N. Formulate this prob-
lem as a linear program.

(d) Argue that the linear program you derived in (c) and the optimization
problem in Problem 3.5 are equivalent.

Problem 3.7 Use the linear programming algorithm from Problem 3.6
on the learning task in Problem 3.1 for the separable (sep = 5) and the non-
separable (sep = —5) cases.

Compare your results to the linear regression approach with and without the
3rd order polynomial feature transform.

Problem 3.8 For linear regression, the out-of-sample error is
Eout(h) = E[(h(x) —9)*] .
Show that among all hypotheses, the one that minimizes Eoy¢ is given by
h™(x) =Ely | x].
The function h* can be treated as a deterministic target function, in which

case we can write y = h*(x) + ¢(x) where ¢(x) is an (input dependent) noise
variable. Show that ¢(x) has expected value zero.

111

d. THE LINEAR MODEL 4.5, ProBLEMS

Problem 3.9 Assuming that Z7Z is invertible, show by direct comparison
with Equation (3.4) that Ei,.(w] can be written as

E-‘iu-{""":l
= (w— (227 2Ty 2 2w — (Z72) "2y + ¥ (1 - 2(772)" ' 2)y

Use this expression for Eiy, to obtain wim, What is the in-sample error? [Hint:
The matrix Z7Z is positive definite |

Problem 3.10 Exercise 3.3 studied some properties of the hat matrix
H = X(X"X)"'X", where X is a N by d + 1 matrix, and X" X is invertible
Show the following additional properties.

(a) Ewvery eigenvalue of H is either D or 1, [Hint: Exercise 3.3(h).]

(b) Show that the trace of a symmetric matrix equals the sum of its eigen-
values. [Hint: Use the spectral theorem and the cyclic property of the
trace. Note that the same result holds for non-symmetric matrices, but
is a little harder to prove,|

{c) How many eigenvalues of H are 17 What is the rank of H? [Hint:
Exercise 3.3(d)]

Problem 3.11 Consider the linear regression problem setup in Exercise 3.4,
where the data comes from a genuine linear relationship with added noise. The
noise for the different data points is assumed to be iid with zera mean and
variance a*, Assume that the 2nd moment matrix ¥ = E,[zz"] is non-singular.
Follow the steps below to show that, with high probability, the out-of-sample
BFFOr On average is

3 8
Emu[w':u,n] = (] =+ % +U|#) f
(a) For a test point x, show that the error y — g(x) is
e—x (22 ',

where ¢ is the noise realization for the test point and e is the vector of
noise realizations on the data.

(b) Take the expectation with respect to the test point, i, % and ¢, to
obtain an expression for E,.,.. Shew that

Eout = " + trace (E(272) ' 27 ee'27(2'2))

[Hints: @ = trace(a) for any scalar o, trace(AB) = trace(BA) expecta-
tion and trace commute.|

(€) What is E, [ee"|?

L PHE LINEAR MODEL o, P HRUBLENMB

(d) Take the expectation with respect to € to show that, on average,
Eoi=ec"+ %;tm‘t{ﬂ{%fzrt] ;

Note that +Z° Z = L¥" =,z is an N-sample estimate of ¥. So
= YA If w4 Z =L, then what is £, on average?

(e Shuw that [al:ter taking the expectation over the data noise) with high

probability,

B = 0 (1+%+ o(L u)
[Hint: By the law of large numbers 4 Z'Z converges in probability to
¥, and so by continuity of the inverse at ¥ {%ZTZ] ! converges in
probability ta 7. |

Problem 3.12 In linear regression, the in-sample predictions are given by
¥ = Hy, where H = X(X"X} 'X". Show that H is a projection matrix, i.e.
H* = H. So v is the projection of y onto some space. What is this space?

Problem 3.13 This problem creates a linear regression algorithm from
a good algorithm for linear classification. As illustrated, the idea is to take the
ariginal data and shift it in one direction to get the +1 data points; then, shift
it in the opposite direction to get the —1 data points.

Original data for the one- Shifted data viewed as a
dimensional regression prob- two-dimensional classifica-
lem tion problem

More generally, The data (x,.y.) can be viewed as data points in RHFT by
treating the y-value as the (d + 1)th coordinate

{continued on next page)

113

o. 1HE LLINEAR MODEL 3.5. PROBLEMS

Now, construct positive and negative points

Dy = (xi,m1)+a,...,(xnv,yn)+a

D- = (xl,y1)—a,4..,(xN,yN)fa,

where a is a perturbation parameter. You can now use the linear programming
algorithm in Problem 3.6 to separate Dy from D_. The resulting separator
can be used as the regression ‘fit’ to the original data.

(a) How many weights are learned in the classification problem? How many
weights are needed for the linear fit in the regression problem?

(b) The linear fit requires weights w, where h(x) = w”™x. Suppose the
weights returned by solving the classification problem are wejass. Derive
an expression for w as a function of Weiags-

(c) Generate a data set y,, = 22 + o€, with N = 50, where ,, is uniform on
[0,1] and €, is zero mean Gaussian noise; set ¢ = 0.1. Plot Dy and D_

0
fora= [0.1] .

(d) Give comparisons of the resulting fits from running the classification ap-
proach and the analytic pseudo-inverse algorithm for linear regression.

Problem 3.14 In a regression setting, assume the target function is linear,
so f(x) = x"w", and y = Zw" + €, where the entries in € are zero mean, iid
with variance ¢2. In this problem derive the bias and variance as follows.

(a) Show that the average function is g(x) = f(x), no matter what the size
of the data set. What is the bias?

(b) What is the variance? [Hint: Problem 3.11]

Problem 3.15 In the text we derived that the linear regression solution
weights must satisfy Z"Zw = ZTy. If Z"Z is not invertible, the solution wy;, =
(Z"2)7'Z™y won't work. In this event, there will be many solutions for w
that minimize Ej,. Here, you will derive one such solution. Let p be the rank
of Z. Assume that the singular value decomposition (SVD) of Z is Z = UT'V”,
where U € RV*? satisfies UTU = 1,, V € RTD*? satisfies VTV = I,, and
[’ € R?** is a positive diagonal matrix.

(a) Show that p < d + 1.

(b) Show that wy, = VI 1U"y satisfies Z"Zwyin = Z"y, and hence is a
solution.

(c) Show that for any other solution that satisfies Z"Zw = ZTy, |lwin] <
wll. That is, the solution we have constructed is the minimum norm set
of weights that minimizes Ein.

114

3. THE LINEAR MODEL 3.5. PROBLEMS

Problem 3.16 In Example 3.4, it is mentioned that the output of the
final hypothesis g(x) learned using logistic regression can be thresholded to get
a 'hard’ (£1) classification. This problem shows how to use the risk matrix
introduced in Example 1.1 to obtain such a threshold.

Consider fingerprint verification, as in Example 1.1. After learning from the
data using logistic regression, you produce the final hypothesis

g(x) =Ply = +1 | x|,

which is your estimate of the probability that y = +1. Suppose that the cost
matrix is given by

True classification
‘ +1 (correct person) —1 (intruder)
+1 0 Ca
1 } Cr 0

you say

For a new person with fingerprint x, you compute g(x) and you now need to de-
cide whether to accept or reject the person (i.e., you need a hard classification).
So, you will accept if g(x) > &, where & is the threshold.

(a) Define the cost(accept) as your expected cost if you accept the person.
Similarly define cost(reject). Show that

cost(accept) = (1 — g(x))ca,

cost(reject) = g(x)cr.

(b) Use part (a) to derive a condition on g(x) for accepting the person and

hence show that
Ca

Cq + Cr

K =

(c) Use the cost-matrices for the Supermarket and CIA applications in Ex-
ample 3.4 to compute the threshold for each of these two cases. Give
some intuition for the thresholds you get.

Problem 3.17 Consider a function
E(u,v) = e + e + e 4+ u’ — 3w +4v% — 3u — 5v,
(a) Approximate E(u + Au,v + Av) by E1(Au,Av), where E, is the
first-order Taylor's expansion of E around (u,v) = (0,0). Suppose

Erv(Au, Av) = auAu + ayAv + a. What are the values of au, av,
and a?

(continued on next page)

115

3. 'I'HE LINEAR MODEL 3.5. PROBLEMS

(b) Minimize E; over all possible (Au, Av) such that [[{Au, Av)|| = 0.5.
. . Aul| .
In this chapter, we proved that the optimal column vector Ayl 18

parallel to the column vector —V E(u,v), which is called the negative
gradient direction. Compute the optimal (Au, Av) and the resulting
E(u+ Au,v + Av).

(¢) Approximate E(u+Au, v+ Av) by Ez(Au., Av), where Es is the second-
order Taylor's expansion of E around (u,v) = (0,0). Suppose

E3(Au, Av) = buu(Au)? +byo (A0) b (A) (Av) +by A+ by Av+b.

What are the values of byw, by, buv, bu, by, and b?

(d) Minimize E» over all possible (Au, Av) (regardless of length). Use the
fact that V2 E(u,v) (the Hessian matrix) is positive definite to prove that
the optimal column vector

2~ e o

which is called the Newton direction.
(e) Numerically compute the following values:

(i) the vector (Au, Av) of length 0.5 along the Newton direction, and
the resulting E(u + Au,v + Av).

(ii) the vector (Au, Av) of length 0.5 that minimizes F(u+Au, v+Av),
and the resulting E(u + Au,v + Av). (Hint: Let Au = 0.5sin#4.)

Compare the values of E{u+ Au, v+ Av) in (b), (e-i), and (e-ii). Briefly
state your findings.

The negative gradient direction and the Newton direction are quite fundamental
for designing optimization algorithms. It is important to understand these
directions and put them in your toolbox for designing learning algorithms.

Problem 3.18 Take the feature transform @ in Equation (3.13) as ®.

{(a) Show that dv.(Has) < 6.

(b) Show that dvc(He) > 4. [Hint: Exercise 3.12]
(¢) Give an upper bound on dvo(Ha,) for X = R%.
(d) Define

= 2 2 2
Do: x = (1,21, 22,21 + @2, 21 — T2, 27, T1T2, To1, Ty) for x € R

Argue that dvc(He,) = dve(H3,). In other words, while ®2(X) € R,
dve(Hg,) < 6 < 9. Thus, the dimension of ®(X) only gives an upper
bound of dvc(He), and the exact value of dve(Ha) can depend on the
components of the transform.

116

3. THE LINEAR MODEL 3.5. PROBLEMS

Problem 3.19 A Transformer thinks the following procedures would
work well in learning from two-dimensional data sets of any size. Please point
out if there are any potential problems in the procedures:

(a) Use the feature transform

(0,---,0,1,0,--+) ifx=x,
N —

(I:‘(X) - n—1
(0,0,---,0) otherwise .

before running PLA.
(b) Use the feature transform @ with

$n(x) = exp (iﬂ)

using some very small .

(c) Use the feature transform @ that consists of all

bi3(x) = exp <; [~ (z',j)||2> 7

22

before running PLA, with i € {0, 355,...,1} and j € {0, 1%5, ..., 1}.

117

118

Chapter 4

Overfitting

Paraskavedekatriaphobia® (fear of Friday the 13th), and superstitions in gen-
eral, are perhaps the most illustrious cases of the human ability to overfit.
Unfortunate events are memorable, and given a few such memorable events,
it is natural to try and find an explanation. In the future, will there be more
unfortunate events on Friday the 13th’s than on any other day?

Overfitting is the phenomenon where fitting the observed facts (data) well
no longer indicates that we will get a decent out-of-sample error, and may
actually lead to the opposite effect. You have probably seen cases of overfit-
ting when the learning model is more complex than is necessary to represent
the target function. The model uses its additional degrees of freedom to fit
idiosyncrasies in the data (for example, noise), vielding a final hypothesis that
is inferior. Overfitting can occur even when the hypothesis set contains only
functions which are far simpler than the target function, and so the plot thick-
ens).

The ability to deal with overfitting is what separates professionals from
amateurs in the field of learning from data. We will cover three themes:
When does overfitting occur? What are the tools to combat overfitting? How
can one estimate the degree of overfitting and ‘certify’ that a model is good,
or better than another? Our emphasis will be on techniques that work well in
practice.

4.1 When Does Overfitting Occur?

Overfitting literally means “Fitting the data more than is warranted.” The
main case of overfitting is when you pick the hypothesis with lower Ej, and
it results in higher Fou. This means that Ei, alone is no longer a good guide
for learning. Let us start by identifying the cause of overfitting.

trom the Greek paraskevi (Friday), dekatreis (thirteen), phobia (fear)

119

UVERFITTING 4.1, WhaeN Does OveERFITTING QCOURY

Consider a simple one-dimensional regression problem with five data points.
We do not know the target function, so let's select a general model, maximiz-
ing our chance to capture the target function. Since 5 data points can be fit
by a 4th order polynomial, we select 4th order polynomials.

The result is shown on the right. The
target function is & 2od order polynomial O Data
{blue curve), with a little added noise in — Target
the data points. Though the target is
simple, the learning algorithm used the
full power of the 4th order polynomial to
fit the data exactly, but the result does
not look anything like the target function.
The data has been ‘overfit.’ The little
noise in the data has misled the learning, x
for if there were no noise, the fitted red
curve would exactly mateh the target. This is a tyvpical overfitting scenario,
in which a complex model uses its additional degrees of freedom to ‘learn’ the
noise,

The fit has zero in-sample error but huge out-of-sample error, so this is a
case of bad generalization (as discussed in Chapter 2) — a likely outcome when
overfitting is occeurring. However, our definition of overfitting poes bevond
bad generalization [or any given hypothesis. Instead, overfitting applies to
a process: in this case, the process of picking a hvpothesis with lower and
lower Ey, resulting in higher and higher E,,;.

4.1.1 A Case Study: Overfitting with Polynomials

Let’s dig deeper to gain a better understanding of when overfitting oceurs. We
will illustrate the main concepts using data in one-dimension and polynomial
regression, a special case of a linear model that uses the feature transform
x =+ (L% -). Consider the two regression problems below:

© Data O Data
— larget —Target

ey &

(a) 10th order target function (b} H0th order target function

In bath problems, the target function is a polynomial and the data set D
contains 15 data points. In (a), the target function is a 10th order polynomial

120

4. OVERFITTING 4.1. Wuaexn Dogs Overrrrrineg Oooonr?

O Data

—2nd Order Fit
—10th Order Fit 0 — 10th Order Fit
:1: -
(a) Noisy low-order target (b} Moiseless high-order farget

Figure 4.1: Fits using 2nd and 10th order polynomials to 15 data points.
In (a), the data are noisy and the target is a 10th order polynomial. In (k)
the data are noiseless and the the target is a 50th order polynomial.

and the sampled data are noisy (the data do not lie on the target function
curve). In (b}, the target funetion is a 50th order polynomial and the data are
noiseless,

The best 2nd and 10th order fits are shown in Figure 4.1, and the in-sample
and ont-of-sample errors are given in the following table,

1{th order noisy target S0th order noiseless target

| 2nd Order 10th Order | 2nd Order 10th Order
Ein 1.050 0.034 Ein 0.029 10-°
Eout 127 9.00 Eoin 0.120 TGEO

What the learning algorithm sees is the data, not the target function. In both
cases, the 10th order polynomial heavily overfits the data, and results in a
nonsensical final hypothesis which does not resemble the target fimetion. The
2ud order fits do not capture the full nature of the target function either, but
thev do at least capture its general trend, resulting in significantly lower out-of-
sample error. The 10th order fits have lower in-sample error and higher out-of-
sample error, so this is indeed a case of overfitting that results in pathologically
baad peneralization.

Exercise 4.1

Let #2 and Hyq be the 2nd and 10th order hypothesis sets respectively.
Specify these sets as parameterized sets of functions. Show that Hs C Hio.

These two examples reveal some surprising phenomena. Let's consider first the
10th order target function, Figure 4.1{a). Here is the scenario. Two learners, O
(for overfitted) and R (for restricted), know that the target function is a 10th
order polynomial. and that they will receive 15 noisy data points. Learner (@

121

4. OVERFITTING 4,1, Waey Does OVerFrrring Occun?

Number of Data Points, N Number of Data Points, N

Figure 4.2: Overfitting is occurring for N in the shaded gray region
because by choosing Hip which has better Ey, you get worse Fou.

uses model Hyg, which is known to contain the target function, and Ands the
best litting hypothesis to the data. Learner R uses model H;, and similarly
finds the best fitting hypothesis to the data.

The surprising thing is that learner / wins (lower out-of-sample error) by
using the smaller model, even though she has knowingly given up the ability
to implement the true target function. Learner R trades off a worse im-sample
error for a huge gain in the generalization error, ultimately resulting in lower
out-of-sample error. What is funny here? A folklore belief about learning is
that best results are obtained by incorporating as much information about the
target function as is available. But as we see here, even if we know the order
of the target and naively incorporate this knowledge by choosing the model
accordingly (Hip), the performance is inferior to that demonstrated by the
more ‘stable’ 2nd order model,

The models Hz and Hyy were in fact the ones used to generate the learn-
ing curves in Chapter 2, and we use those same learning curves to illustrate
overfitting in Figure 4.2. If you mentally superimpose the two plots, vou can
see that there is a range of N for which H;y has lower Ej, but higher E,
than Hs does, a case in point of overfitting.

Is learner R always going to prevail? Certainly not. For example, if the
data was noiseless, then indeed learner O would recover the target function
exactly from 15 data points, while learner R would have no hope. This brings
us to the second example, Figure 4.1(b). Here, the data is noiseless, but the
target function is very complex (50th order polynomial), Again learner R
wins, and again because learner () heavily overfits the data. Overfitting is
ot a disease inflicted only upon complex models with many more degrees of

“Freedom than warranted by the complexity of the target function. In fact the
reverse is true here, and overfitting is just as bad. What matters is how the
model complexity matches the quantity and quality of the data we have, not
how it matches the target function.

122

4. OVERFITTING 4.1, WHeEN Doges OVERFITTING OCCcuR?

4.1.2 Catalysts for Overfitting

A skeptical reader should ask whether the examples in Figure 4.1 are just
pathological constructions created by the authors, or is overfitting a real phe-
nomenon which has to be considered carefully when learning from data? The
next exercise guides you through an experimental design for studying overfit-
ting within our current setup. We will use the results from this experiment
to serve two purposes: to convinee you that overfitting is not the result of
some rare pathological construction, and to unravel some of the conditions
conducive to overfitting.

Exercise 4.2 [Experimental design for studying overfitting]

This is a reading exercise that sets up an experimental framewerk to study
various aspects of overfitting. The reader interestad in implementing the
experiment can find the details fleshed out in Problem 44. The input
space is X' = [~1,1], with uniform input probability density, P(x) = §.
We consider the two models Ha and Hio.

The target is a degree-Q); polynomial, which we write flr] =
):q_ﬂ agLg(x). where Li{z) are polynomials of increasing complexity (the
Legendre palynomials). The data set is D = (x4, 1), ..., (25, yn), where
e = flxs) + 7e, and ¢, are jid (independent and identically ﬂ:imih;mfj

standard Normal random variates.

For a single experiment, with specified values for Q_nN. T, M a m‘b—
dom degree-(0; target function by selecting coefficients a; indepencs
from a standard Normal, rescaling them so that Ea . [F] = 1. Gen
erate a data set, selecting =y,....zx independently mnrdins h P{ﬂ
and yn = flza) + oea. I:,el:_mandg;q. be the best fit hy
the data from Hy and Hig respectively, with nut-nf-ﬂmﬂtmﬂ Euuﬁm]
and E.u(gin)-

Vary @, N, =, and for each combination of parameters, run a large number

of experiments, each time computing Eou (g2} and Eou(gid)- #yaﬂgin;
these out-of-sample errors gives estimates of the expected
error for the given learning scenario (€}, N, =) using Ha and ‘Hm.

Exercise 4.2 set up an experiment to study how the noise level a?, the target
complexity @y, and the number of data points N relate to overfitting. We
compare the final hypothesis gy € Hyo (larger model) to the final hypothesis
ga € Hu (smaller model). Clearly, Ein(g10) < Einlge) since gio has more
degrees of freedom to fit the data. What is surprising is how often gyg overfits
the data, resulting in Enue{g10) > Eout(g2). Let us define the overfit measure
as Eou(g10) — Eauwlgz). The more positive this measure is, the more severe
overfitting would be,

Figure 4.3 shows how the extent of overfitting depends on certain pararme-
ters of the learning problem (the results are from our implementation of Exer-
cise 4.2). In the figure, the colors map to the level of overfitting, with redder

123

4. OVERFITTING 4.1. Waen Does OverFrTing Oooun?

5) ‘_‘IIHI L
or
‘It b | CEl :-l " i1
o '#
g -2
g 3
; 1 5 L
Liiioy s 118} o = : i T T
Number of Dt Podnts, & Number of Data Points, &
(a) Stochastic noise (b)) Deterministic noise

Figure 4.3; How overfitting depends on the noise %, the target function
complexity @y, and the mumber of data points &, The colors map to the
overfit measure Eog{ Hin) — Eouc(Mz). In (a) we see how overfitting depends
on o and N, with Gy =20, As 7 lncreases we are adding stochastic noise
to the data. In (b) we see how overfitting depends on @@y and N, with
gt =0.1. As Gy mcreases we are adding deterministic noise to the data,

regions showing worse overfitting. These red regions are large—overfitting is
real, and here to stay.

Figure 4.3(a) reveals that there is less overfitting when the noise level o
drops or when the munber of data points N increases (the linear pattern in
Figure 4.3(a) is typical). Since the ‘signal’ f is normalized to E[f?] = 1,
the noise level #° is automatically calibrated to the signal level. Noise leads
the learning astray, and the larger, more complex maodel is more susceptible to
noise than the simpler one because it has more ways to go astray, Figure 4.3(h)
reveals that target function complexity ¢}y affects overfitting in a similar way
to noise, albeit nonlinearly, To swmmarize,

Number of data points Overfitting |
Noise i Overfitting 1
Target complexity ' Chverfittin

Deterministic noise. Why does a higher target complexity lead to more
averfitting when comparing the same two models? The intuition is that for a
given learning model. there is a best approximation to the target function. The
part of the target function ‘outside’ this best fit acts like noise in the data, We
cin call this delermanistic nowe to differentiate it from the random stochastic
noise. Just as stochastic noise cannot be modeled, the deterministic noise
is that part of the tareet function which cannot be modeled, The learning
algorithm should not attempt to it the nmse; however, it cannot distinguish
noise from signal. On a Anite data set, the alporithm inadvertent lv 11568 some

124

4. OVERFITTING 4.1. Wiex Does OverFrrrine Ooom?

Figure 4.4: Deterministic noise. h* is the best fit to [in Ha. The shading
illustrates deterministic noise for this leaming problem.

of the degrees of freedom to fit the noise, which can result in overfitting and
a spurious final hypothesis,

Figure 4.4 illustrates deterministic noise for a quadratic model fitting a
more complex target function. While stochastic and deterministic noise have
similar effects on overfitting, there are two basic differences between the two
types of noise. First, if we generated the same data (x values) again, the
deterministic noise would not change but the stochastic noise would, Second,
different models capture different ‘parts’ of the target function, hence the same
data set will have different deterministic noise depending on which model we
use. In reality, we work with one model at a time and have only one data set
on hand. Hence, we have one realization of the noise to work with and the
algorithm cannot differentiate between the two types of noise,

Exercise 4.3
Deterministic noise depends on H, as some models
than athers.

(a) Assume H is fixed and we increase the
ministic noise in general go up or down?
tendency to overfit?

(b) Assume [is fixed and we decrease the
ministic naise in general go up or dow
tendency to overfit? [Hint: There is a race b

fect overfiting in oppesi ._.mtﬂi;

The bias-variance decomposition, which we discussed in Section 2.3.1 (see also
Problem 2.22) is a useful tool for understanding how noise affects performance:

Ep|Ea] = o® + bias + var.

The first two terms reflect the direct impact of the stochastic and determin-
istic noise, The variance of the stochastic noise is o* and the bias is directly

125

4. OVERFITTING 4.2, REGULARIZATION

related to the deterministic noise in that it captures the model’s inability to
approximate f. The var term is indirectly impacted by both types of noise,
capturing a model's susceptibility to being led astray by the noise.

4.2 Regularization

Regularization is our first weapon to combat overfitting. It constrains the
learning algorithm to improve out-of-sample error, especially when noise is
present. To whet your appetite, look at what a little regularization can do for
our first overfitting example in Section 4.1. Though we only used a very small
‘amount” of regularization, the fit improves dramatically.

O Tlata
— Target
—Fit

ot x

without regularization with regularization

Now that we have vour attention, we would like to come clean. Regularization
is as much an art as it is a science, Most of the methods used successfully
in practice are heoristic methods, However, these methods are grounded in a
mathematical framework that is developed for special cases. We will discuss
both the mathematical and the heuristic, trying to maintain a balance that
reflects the reality of the field.

Speaking of heuristics, one view of regularization is through the lens of the
VC bound., which bounds E,,; using a model complexity penalty Q(H):

E-:ml[h} = J!'-"in[lrlj + EE{HJ‘ for all h € H. (4.1)

So, we are better off if we fit the data nsing a simple H. Extrapolating one step
further, we should be better off by fitting the data using a ‘simple’ h from H.
The essence of regularization is to concoct a measure 1) for the complexity
of an individual hypothesis. Instead of minimizing E, () alone, one minimizes
a combination of Ej,(h) and Q(h). This avoids overfitting by constraining the
learning algorithm to fit the data well using a simple hypothesis.

Example 4.1. One popular regularization technique is weight decay, which
measures the complexity of a hypothesis /i by the size of the coeflicients used
to represent b (e.g. in a linear model). This heuristic prefers mild lines with

126

4. OVERFITTING 4.2. REGULARIZATION

small offset and slope, to wild lines with bigger offset and slope. We will get to
the mechanics of weight decay shortly, but for now let’s focus on the outeome,

We apply weight decay to fitting the target f(x) = sin{mr) using N = 2
data points (as in Example 2.8). We sample = uniformly in [—1, 1], generate a
data set and fit a line to the data (our model is Hy). The figures below show the
resulting fits on the same (random) data sets with and without regularization.

without regularization with regularization

Without regularization, the learned function varies extensively depending on
the data set. As we have seen in Example 2.8, a constant model scored
E.ue = 0.75, handily beating the performance of the (unregularized) linear
model that scored E,, = 1.90. With a little weight decay regularization,
the fits to the same data sets are considerably less volatile. This results in a
significantly lower E,, = 0.56 that beats both the constant model and the
unregularized linear model.

The bias-variance decomposition helps us to understand how the regular-
ized version beat both the unregnlarized version as well as the constant model.

sinfr]
T
without regularization with regularization i
bias = 0.21; bias = 0.23;
var = 1.69. var = .33,

Average hypothesis § (red) with var(z) indicated by the gray shaded
region that is §{r) £ /var(x). e —

As expected. regularization reduced the var term rather dramatically from 1.69
down to 0.33. The price paid in terms of the bias (quality of the average fit) was

127

4. OVERFITTING 4.2. REGULARIZATION

modest, only slightly increasing from 0.21 to 0.23. The result was a significant
decrease in the expected out-of-sample error because bias+var decreased. This
is the crux of regularization. By constraining the learning algorithm to select
‘simpler’ hypotheses from #, we sacrifice a little bias for a significant gain in
the var. 0O

This example also illustrates why regularization is needed. The linear
model is oo sophisticated for the amount of data we have, since a line can
perfectly fit any 2 points. This need would persist even if we changed the
target function, as long as we have either stochastic or deterministic noise.
The need for regularization depends on the quantity and quality of the data.
Given our meager data set, our choices were either to take a simpler model,
such as the model with constant functions, or to constrain the linear model. It
turns out that using the complex model but constraining the algorithm toward
simpler hypotheses gives us more flexibility, and ends up giving the best E,,.
In practice, this is the rule not the exception.

Enough heuristics. Let’s develop the mathematics of regularization.

4.2.1 A Soft Order Constraint

In this section, we derive a regularization method that applies to a wide va-
riety of learning problems. To simplify the math, we will use the concrete
setting of regression using Legendre polynomials, the polynomials of increas-
ing complexity used in Exercise 4.2. So, let’s first formally introduce you to
the Legendre polynomials.

Consider a learning model where H is the set of polynomials in one vari-
able z € [~1,1]. Instead of expressing the polynomials in terms of consecutive
powers of z, we will express them as a combination of Legendre polynomials
in . Legendre polynomials are a standard set of polynomials with nice ana-
lytic properties that result in simpler derivations. The zeroth-order Legendre
polynomial is the constant Ly(z) = 1, and the first few Legendre polynomials
are illustrated below.

L, Ly Ly Ly

1822 -1) 1(52% — 32) $(35z* — 3022 + 3) 3(63z°--.)

As you can see, when the order of the Legendre polynomial increases, the curve
gets more complex. Legendre polynomials are orthogonal to each other within
z € [~1,1], and any regular polynomial can be written as a linear combination
of Legendre polynomials, just like it can be written as a linear combination of
powers of z.

128

4. OVERFITTING 4.2. REGULARIZATION

Polynomial models are a special case of linear models in a space Z, under
a nonlinear transformation ®: X — Z. Here, for the @Qth order polynomial
model, ® transforms z into a vector z of Legendre polynomials,

Our hypothesis set H, is a linear combination of these polynomials,

Q
Hq = {h hiz) =w"z = quLq(:p)} ,
a=0 weRQ+L

where Lo(z) = 1. As usual, we will sometimes refer to the hypothesis h by its
weight vector w.? Since each h is linear in w, we can use the machinery of
linear regression from Chapter 3 to minimize the squared error

1
:NZWZn yn)2. (4.2)

The case of polynomial regression with squared-error measure illustrates the
main ideas of regularization well, and facilitates a solid mathematical deriva-
tion. Nonetheless, our discussion will generalize in practice to non-linear,
multi-dimensional settings with more general error measures. The baseline al-
gorithm (without regularization) is to minimize E;, over the hypotheses in H,
to produce the final hypothesis g(x) = W}, z, where wii, = argmin Ei, (w).

wW

Exercise 4.4

Let Z = [z1 ... zN]T be the data matrix (assume Z has full column
rank); let win = (Z°Z)"'Z"y; and let H = 7(2Z7Z)"'Z" (the hat matrix
of Exercise 3.3). Show that

(W — Wiin)"Z"Z(W — wiin) + y" (I - H)y

En(w) = ~ , (a3)

where I is the identity matrix.
{a) What value of w minimizes Ei,?

(b) What is the minimum in-sample error?

The task of regularization, which results in a final hypothesis Wreg instead of
the simple wy;,, is to constrain the learning so as to prevent overfitting the

2We used w and d for the weight vector and dimension in Z. Since we are explicitly
dealing with polynomials and Z is the only space around, we use w and Q for simplicity.

129

4. OVERFITTING 4.2. REGULARIZATION

data. We have already seen an example of constraining the learning; the set Ha
can he thought of as & constrained version of Hip in the sense that some of
the M weights are required to be zero. That is, Hy is a subset of H g defined
by Ho = {w | w € Higiwy = 0 for ¢ = 3} . Requiring some weights to be 0 is
& hard constraint. We have seen that such a hard constraint on the order can
help, for example Hz is better than My when there is a lot of noise and N is
small. Instead of requiring some weights to be zero, we can force the weights
to be small but not necessarily zero through a softer constraint such as

o
Z 'u.lﬁ <.

g=I

This is a “soft order’ constraint because it only encourages each weight to be
amall, without changing the order of the polynomial by explicitly setting some
weights to zero. The in-sample optimization problem becomes:

min Ei,(w) subject to w'w < C, (4.4)
w

The data determines the optimal weight sizes, given the total budget ¢ which
determines the amount of regularization; the larger O s, the weaker the con-
straint and the smaller the amount of regularization. We can define the soft-
order-constrained hypothesis set H{C) by

HIC)=1{h|hir)=w"z, ww < C}.

Equation (4.4) is equivalent to minimizing £, over H(C'). If € < Cs, then
H(C)) © H((2) and so dyo(H(CY)) < dye(H(C2)), and we expect better
generalization with H(C;). Let the regularized weights wiee be the solution

to (4.4).

Solving for Wrag: If Wi Wiin = € then Wreg = £y = const.
Wiin because wy,, € H(C). If wy, € H(C), then
not only is wi Wi, < €, but in fact w}, Wi, = C
[Wieg uses the entire budget C; see Problem 4.10).
We thus need to minimize Ej, subject to the
equality constraint w'w = (. The situation is
illustrated to the right. The weights w must lie
on the surface of the sphere w™w = ('; the normal ;
vector to this surface at w is the vector w itself e W=
(also in red). A surface of constant Ej, is shown in
blue; this surface is a quadratic surface (see Exercise 4.4) and the normal to
thissurfaee s VE, fw). T this case, w eannot be optimal because VE;, (w) s
not parallel to the red normal vector. This means that ¥V E,, (w) has some non-
#ero component along the constraint surface, and by moving a small amount
in the opposite direction of this component we can improve £, while still

130

4. UWVERFITTING el MRGULARLEATILNY

remaining on the surface. If Wy, is to be optimal, then for some positive
parameter Ag

vEJI:I.':wH"E,} = _g‘k{“wn‘“1

i.e., VEy, must be parallel to W, the normal vector to the constraint surface
(the scaling by 2 is for mathematical convenience and the negative sign is
hecause ¥V Ey, and w are in opposite directions). Equivalently, wy., satisfies

YV (Einlw) + }.r-w’w}| =

W Wiey
because ¥{wT™w) = 2w. So, for some Ao > (), Wi locally minimizes
Ein(w) + Acw W, {4.5)

The parameter Ao and the vector wy.e (both of which depend on € and the
data) must be chosen so as to simultaneously satisfy the gradient equality and
the weight norm constraint Wi W = €. That Ao > 0 is intuitive since
we are enforcing smaller weights, and minimizing Ej,(w) + Aew"™w would
not lead to smaller weights if Ar were negative. Note that if wij wi, = €,
Weeg = Win and minimizing (4.5) still holds with Ae = 0. Therefore, we
have an equivalence between solving the constrained problem (4.4) and the
unconstrained mintmization of (4.5}, This equivalence means that minimiz-
ing (4.5) is similar to minimizing £, using a smaller hypothesis set, which in
turn means that we can expect better generalization by minimizing (4.5) than
by just minimizing Fiy.

Other variations of the constraint in (4.4) can be used to emphasize some
weights over the others. Consider the constraint EELH *r.,wf} < (7. The im-
portance 7, given to weight w, determines the type of regularization, For
example, 5, = ¢ encourages a low-order fit, and 7, = % encourages a high-
order fit. In extreme cases, one recovers hard-order constraints by choosing
some “f; = () and some 5, —+ o0,

Exercise 4.5 [Tikhonov regularizer|

w'Tw<(C o
which can capture relationships among the w, (the matrix I"is the Tikhonov

regularizer).
(a) What should I' be to obtain a constraint of the form

@"gﬁ?hidmuld I' be to obtain a constraint of the form ﬁ:’" i _'-

4 Ar is known as o Lagrange multiplier and an alternate derivation of these same results
can he abtained via the theory of Lagrange multipliers for constrained optimizntion.

131

4. OVERFITTING 4.2. REGULARIZATION

4.2.2 Weight Decay and Augmented Error

The soft-order constraint for a given value of C is a constrained minimiza-
tion of Ei,. Equation (4.5) suggests that we may equivalently solve an un-
constrained minimization of a different function. Let’s define the augmented
error,

Eans(W) = Ein(w) + 2w w, (4.6)

where A > 0 is now a free parameter at our disposal. The augmented error has
two terms. The first is the in-sample error which we are used to minimizing,
and the second is a penalty term. Notice that this fits the heuristic view of
regularization that we discussed earlier, where the penalty for complexity is
defined for each individual 4 instead of H as a whole. When A = 0, we have the
usual in-sample error. For A > 0, minimizing the augmented error corresponds
to minimizing a penalized in-sample error. The value of A controls the amount
of regularization. The penalty term w™w enforces a tradeoff between making
the in-sample error small and making the weights small, and has become known
as weight decay. As discussed in Problem 4.8, if we minimize the augmented
error using an iterative method like gradient descent, we will have a reduction
of the in-sample error together with a gradual shrinking of the weights, hence
the name weight ‘decay.” In the statistics community, this type of penalty
term is a form of ridge regression.

There is an equivalence between the soft order constraint and augmented
error minimization. In the soft-order constraint, the amount of regularization
is controlled by the parameter C. From (4.5), there is a particular Ac (depend-
ing on C' and the data D), for which minimizing the augmented error Eoug (W)
leads to the same final hypothesis wy.,. A larger C allows larger weights and
is a weaker soft-order constraint; this corresponds to smaller J, i.e., less em-
phasis on the penalty term w”w in the augmented error. For a particular
data set, the optimal value C* leading to minimum out-of-sample error with
the soft-order constraint corresponds to an optimal value A* in the augmented
error minimization. If we can find A*, we can get the minimum FE,,;.

Have we gained from the augmented error view? Yes, because augmented
error minimization is unconstrained, which is generally easier than constrained
minimization. For example, we can obtain a closed form solution for linear
models or use a method like stochastic gradient descent to carry out the mini-
mization. However, augmented error minimization is not so easy to interpret.
There are no values for the weights which are explicitly forbidden, as there
are in the soft-order constraint. For a given C, the soft-order constraint cor-
responds to selecting a hypothesis from the smaller set H(C), and so from
our VC analysis we should expect better generalization when C' decreases (A
increases). It is through the relationship between A and C that one has a
theoretical justification of weight decay as a method for regularization.

We focused on the soft-order constraint w™w < C with corresponding
augmented error F,.,(w) = Ei,(w) + AwTw. However, our discussion applies
more generally. There is a duality between the minimization of the in-sample

132

4. OVERFITTING 4.2. REGULARIZATION

error over a constrained hypothesis set and the unconstrained minimization of
an augmented error. We may choose to live in either world, but more often
than not, the unconstrained minimization of the augmented error is more
convenient.

In our definition of F,uz(w) in Equation (4.6), we only highlighted the
dependence on w. There are two other quantities under our control, namely
the amount of regularization, A, and the nature of the regularizer which we
chose to be w"w. In general, the augmented error for a hypothesis h € H is

Baug(hy A, Q) = En(h) + %Q(h). (4.7)

For weight decay, (2(h) = w™w, which penalizes large weights. The penalty
term has two components: the regularizer Q(h) (the type of regularization)
which penalizes a particular property of h; and the regularization parameter A
(the amount of regularization). The need for regularization goes down as the
number of data points goes up, so we factored out %; this allows the optimal
choice for A to be less sensitive to N. This is just a redefinition of the) that
we have been using, in order to make it a more stable parameter that is easier
to interpret. Notice how Equation (4.7) resembles the VC bound (4.1) as we
anticipated in the heuristic view of regularization. This is why we use the same
notation {2 for both the penalty on individual hypotheses 2(h) and the penalty
on the whole set Q(#H). The correspondence between the complexity of H and
the complexity of an individual A will be discussed further in Section 5.1.
The regularizer 2 is typically fixed ahead of time, before seeing the data;
sometimes the problem itself can dictate an appropriate regularizer.

Exercise 4.6

We have seen both the hard-order constraint and the soft-order constraint.
Which do you expect to be more useful for binary classification using the
perceptron model? [Hint: sign(w™x) = sign(aw"x) for any a > 0.]

The optimal regularization parameter, however, typically depends on the data.
The choice of the optimal A is one of the applications of validation, which we
will discuss shortly.

Example 4.2. Linear models with weight decay. Linear models are

important enough that it is worthwhile to spell out the details of augmented

error minimization in this case. From Exercise 4.4, the augmented error is
(W — Wiin)TZ Z(w — wiip) + Aww + y*(I - H)y

Eau =)
g(W) N

where Z is the data matrix and wy, = (Z7Z)"!ZTy. The reader may vgrify
that taking the derivative of F,,, with respect to w and setting it to 0 gives

Wieg = (Z7Z + NX) "1 Z7y.

133

4, WUYERFITTING 4.2, HEGULARIZATION

As expected, Wi will go to zero as A — oo, due to the Al term. The predice-
tions on the in-sample data are given by ¥ = Zw,., = H(\)y, where

H(X) =Z(Z7Z + AI)~'2".

The matrix H{A) plays an important role in defining the effective complexity
of a model. When A =0, H is the hat matrix of Exercises 3.3 and 4.4, which
satisfies H* = H and trace(H) = d + 1. The vector of in-sample errors, which
are also called residuals, is y — ¥ = (I— H(A))y, and the in-sample error £,
is E]u{wn:\g:l == ?':‘?er“ re H':I}'J}:.'!'- O

We can now apply weight decay regularization to the first overfitting example
that opened this chapter. The results for different A's are shown in Figure 4.5,

A= 0,0001 A =0 A=1

g x T

Figure 4.5: Weight decay applied to Example 4.2 with different values for
the regularization parameter A. The red fit gets flatter as we increase A,

As you can see, even very little regularization goes a long way, but too much
regularization results in an overly flat curve at the expense of in-sample fit.
Another case we saw earlier is Example 4.1, where we it a linear model to a
sinusoid. The regularization used there was also weight deeay, with A = 0.1,

4.2.3 Choosing a Regularizer: Pill or Poison?

We have presented a number of ways to constrain a model: hard-order con-
straints where we simply use a lower-order model, soft-order constraints where
we constrain the parameters of the model, and augmented error where we add
penalty term to an otherwise unconstrained minimization of error. Aug-
mented error is the most popular form of regularization. for which we need to
choose the regularizer Q(h) and the regularization parameter A,

In practice, the choice of {1 is largely heuristic. Finding a perfect £} is as
difficult as finding a perfect H. Tt depends on information that, by the very
nature of learning. we don't have. However, there are regularizers we can work
with that have stood the test of time, such as weight decay. Some forms of
regularization work and some do not, depending on the specific application
and the data. Figure 4.5 illustrated that even the amount of regularization

134

4. OVERFITTING 4.2. REGULARIZATION

Rt‘gl;.: arization Far:i:nmr. A . Reﬁlﬂriuﬁhﬂ Pﬂt‘ﬂnﬂu. ’A
(&) Uniform regularizer ib) Low-order regularizer

Figure 4.6: Out-of-sample perfurmn.m:a for the uniform and low-order reg-
ularizers using model His, with o® = 0.5, @ = 15 and N = 30. Overfitting
occurs in the shaded region because lower Eiy (lower A) leads to higher B
Underfitting occurs when A is too large, because the learning algorithm has
too little Aexibility to it the data

has to be chosen carefully. Too much regularization (too harsh & constraint)
leaves the learning too little flexibility to fit the data and leads to underfitting,
which can be just as bad as overfitting,

If s0 many clivices can go wrong, why do we bother with regularization
in the first place? Regularization is a necessary evil, with the operative word
being necessary. If our model is too sophisticated for the amount of data
we have, we are doomed. By applying regularization, we have a chance. By
applying the proper regularization, we are in good shape. Let us experiment
with two choices of a regularizer for the model His of 15th order polynomials,
using the experimental design in Exercise 4.2

15 a2

1. A uniform regularizer: Q,,f(w) =% o W3

15 b |

2. A low-order regularizer: (o (w) = 3" qui.

The first encourages all weights to be small, uniformly; the second pays more
attention to the higher order weights, encouraging a lower order fit. Figure 4.6
shows the performance for different values of the regularization parameter A
As you decrease A, the optimization pays less attention to the penalty term and
more to Fy,, and so By, will decrease (Problem 4.7). In the shaded region, Egu.
increases as you decrease Fj, (decrease A) — the regularization parameter is
too small and there is not enough of a constraint on the learning, leading
to decreased performance becanse of overfitting. In the unshaded region, the
regularization parameter is too large, over-constraining the learning and not
giving it enough flexibility to fit the data, leading to decrensed performance
because of underfitting. As ean be observed from the figure, the price paid for
overfitting is generally more severe than underfitting. It usually pays to be
conservative,

135

4, OVERFITTING 4.2. REGULARIZATION

&y

3

g

% :

o3|

L [13 2 i} 1 L |

HF.,EII&M.{[JI‘I Parnmeter, A H.q;L:Iuriznl.i.nn Parameter, A
{a) Stochastic noise (b} Deterministic noise

Figure 4.7: Performance of the uniform regularizer at different levels of
noige, The optimal A is highlighted for each curve,

The optimal regularization parameter for the two cases is quite different
and the performance can be quite sensitive to the choice of regularization
parameter. However, the promising message from the fizure is that though
the behaviors are quite different, the performances of the two regularizers are
comparable (around 0.76), if we choose the right A for cach.

We can also use this experiment to study how performance with regular-
ization depends on the noise. In Figure 4.7(a), when o2 = (0, no amount
of regularization helps (i.e., the optimal regularization parameter is A = (),
which is not a surprise becanse there is no stochastic or deterministic noise in
the data (both target and model are 15th order polynomials). As we add more
stochastic noise, the overall performance degrades as expected. Note that the
optimal value for the regularization parameter increases with noise, which is
also expected based on the earlier discussion that the potential to overfit in-
creases as the noise inereases; hence, constraining the learning more should
help. Figure 4.7(b) shows what happens when we add deterministic noise,
keeping the stochastic noise at zern. This is accomplished by inereasing g
(the target complexity), thereby adding deterministic noise, but keeping ev-
erything else the same. Comparing parts (a) and (b) of Figures 4.7 provides
another demonstration of how the effects of deterministic and stochastic noise
are similar. When either is present. it is helpful to regularize, and the more
noise there is, the larger the amount of regularization vou need.

What happens if you pick the wrong
regularizer? To illustrate. we picked a
regularizer which encourages large weights
(weight growth) versus weight decay which
encourages small weights, As you can see,
in this case, weight growth does not help
the cause of overfitting. If we happened to
choose weight growth as our regularizer,
we would still be OK as long as we have Regularization Parameter, A

weight growth

Expected Eyuy

136

4. OVERFITTING 4.3. Vauarion

a good way to pick the regularization parameter - the optimal regularization
parameter in this case is A = 0, and we are no worse off than not regularizing.
No regularizer will be ideal for all settings, or even for a specific setting since
we never have perfect information, but they all tend to work with varying
suceess, if the amount of reqularization A is set fo the correct level Thus, the
entire burden rests on picking the right A, a task that can be addressed by a
technique called validation, which is the topic of the next section.

The lesson learned is that some form of regularization is necessary, as learn-
ing is quite sensitive to stochastic and deterministic noise. The best way to
constrain the learning is in the ‘direction’ of the target function, and more
of a constraint is needed when there is more noise. Even though we don't
know either the target function or the noise, regularization helps by reducing
the impact of the noise. Most common models have hypothesis sets which are
naturally parameterized so that smaller parameters lead to smoother hypothe-
ses. Thus, a weight decay type of regularizer constrains the learning towards
smoother hyvpotheses. This helps, becanse stochastic noise is ‘high Meguency’
(non-smooth). Similarly, deterministic noise (the part of the target function
which cannot be modeled) also tends to be non-smeoth. Thus, constraining
the learning towards smoother hypotheses ‘hurts’ our ability to overfit the
noise more than it hurts our ability to fit the vseful information. These are
crpirical observations, not theoretically justifiable statements.

Regularization and the VC dimension. Regularization (for example
soft-order selection by minimizing the augmented error) poses a problem for
the VO line of reasoning. As A goes up, the learning algorithm changes but
the hypothesis set does not, so dye will not change. We argued that A T in
the augmented error corresponds to €' | in the soft-order constrained model.
So, more regularization corresponds to an effectively smaller model, and we
expect better generalization for a small inerease in By, even though the VC
dimension of the model we are actually using with angmented error does not
change. This suggests a heuristic that works well in practice, which is to use an
‘effective VO dimension’ instead of the VO dimension. For linear perceptrons,
the VC dimension equals the number of free parameters d + 1. and so an effec-
tive number of parameters is a good surrogate for the VO dimension in the VC
hound. The effective number of parameters will go down as A increases, and
s0 the effective VO dimension will reflect better generalization with inereased
regularization. Problems 4.13, 4.14, and 4.15 explore the notion of an effective
number of parameters.

4.3 Validation —
So far, we have identified overfitting as a problem. noise (stochastic and deter-
ministic) as a cause, and regnlarization as a cure. In this section, we introduce

another cure, called validation, One can think of both regularization and val-

137

4. OVERFITTING 4.3. VALIDATION

idation as attempts at minimizing E,,; rather than just Ei,. Of course the
true Eoye is not available to us, so we need an estimate of E,,; based on in-
formation available to us in sample. In some sense, this is the Holy Grail of
machine learning: to find an in-sample estimate of the out-of-sample error.
Regularization attempts to minimize E,y; by working through the equation

Eoui(h) = Ei(R) + overfit penalty,
———

regularization estimates this quantity

and concocting a heuristic term that emulates the penalty term. Validation,
on the other hand, cuts to the chase and estimates the out-of-sample error
directly.

Eout(h) = Ein(h) + overfit penalty.

N——

validation estimates this quantity

Estimating the out-of-sample error directly is nothing new to us. In Sec-
tion 2.2.3, we introduced the idea of a test set, a subset of D that is not
involved in the learning process and is used to evaluate the final hypothesis.
The test error Fiest, unlike the in-sample error Ei,, is an unbiased estimate
of Eout-

4.3.1 The Validation Set

The idea of a wvalidation set is almost identical to that of a test set. We
remove a subset from the data; this subset is not used in training. We then
use this held-out subset to estimate the out-of-sample error. The held-out set
is effectively out-of-sample, because it has not been used during the learning.

However, there is a difference between a validation set and a test set.
Although the validation set will not be directly used for training, it will be
used in making certain choices in the learning process. The minute a set affects
the learning process in any way, it is no longer a test set. However, as we will
see, the way the validation set is used in the learning process is so benign that
its estimate of E, . remains almost intact.

Let us first look at how the validation set is created. The first step is
to partition the data set D into a training set Dipin of size (N — K) and a
validation set Dy, of size K. Any partitioning method which does not depend
on the values of the data points will do; for example, we can select N — K
points at random for training and the remaining for validation.

Now, we run the learning algorithm using the training set Diyain to obtain
a final hypothesis g~ € H, where the ‘minus’ superscript indicates that some
data points were taken out of the training. We then compute the validation
error for g~ using the validation set Dy

Eval(g_) - % Z € (gg(xn)7yn)7

Xpn €Dyal

138

4. OVERFITTING 4.3. VALIDATION

where e (¢°(x),y) is the pointwise error measure which we introduced in Sec-
tion 1.4.1. For classification, e(g(x),y) = [¢7(x) # y] and for regression using
squared error, e(g(x),y) = (g (x) — y)2.

The validation error is an unbiased estimate of E,y because the final hy-
pothesis ¢~ was created independently of the data points in the validation set.
Indeed, taking the expectation of Ey, with respect to the data points in Dy,

Ep[Bea(@)) = % 3 Eou le(g7xa).)]

X €Dval

- "Il? Z Eout (g—)7

Xpn, E€EDyal
= Eou(9). (4.8)

The first step uses the linearity of expectation, and the second step follows
because e (§7(xn), Yn) depends only on x,, and so

EDval [e (g‘(xn)a yn)} = Exn [e (g_(xn)? yn)] = Eous (g_)-

How reliable is E,) at estimating E..:? In the case of classification, one can
use the VC bound to predict how good the validation error is as an estimate for
the out-of-sample error. We can view Dy, as an ‘in-sample’ data set on which
we computed the error of the single hypothesis g~ We can thus apply the
VC bound for a finite model with one hypothesis in it (the Hoeffding bound).
With high probability,

Fout(d) < Bua(9) +0 () - (4.9)

While Inequality (4.9) applies to binary target functions, we may use the
variance of F., as a more generally applicable measure of the reliability. The
next exercise studies how the variance of E,, depends on K (the size of the
validation set), and implies that a similar bound holds for regression. The
conclusion is that the error between Eya1{g) and Eoui(g7) drops as o(g7)/ VK,
where o(g") is bounded by a constant in the case of classification.

Exercise 4.7

Define 02, défVar[E‘,al(g‘)]. We consider how o2, depends on K. Let

o*(g") = Varxle(g(x),y)]
be the pointwise variance in the out-of-sample error of g~.
(a) Show that o2, = %02(57‘).

(b) In a classification problem, where e(g7(x),y) = [g7(x) # y]. express
Var[Eyai(g7)] in terms of Plg(x) # y].

(c) Show that for any g in a classification problem, Var[Evai(g7)] < le.{_'_

(continued on next page)

139

The expected validation error for Ha is illustrated in Figure 4.8, where we
used the experimental design in Exercise 4.2, with Q; = 10, N = 40 and noise
level 0.4, The expected validation error equals FEoy(g7), per Equation (4.8).

Expected Eoq

0 0
Sige of Validation Set, K

Figure 4.8: The expected validation error E[E.(g)] as a function of K;
the shaded area is E[En.l.]: + Tenl

The figure clearly shows that there is a price to he paid for setting aside K
data points to get this unbiased estimate of £, when we set aside more
data for validation, there are fewer training data points and so g becomes
worse; Fou (g), and hence the expected validation error, increases (the hlue
curve). As we expect, the uncertainty in Ey, as measured by o (size of the
shaded region) is decreasing with K, up to the point where the variance o2(g)
gets really bad. This point comes when the number of training data points
becomes critically small, as in Exercise 4.7(e). If K is neither too small nor
too large, F. provides a good estimate of £, A rule of thumb in practice
. dstoset K = & (set aside 20% of the data for validation).

¢ have established two conflicting demands on K. It has to be big enough
for E,. to be reliable, and it has to be small enough so that the training set
with N — K points is big enough to get a decent g, Inequality (4.9) quantifies
the first demand. The second demand is quantified by the learning curve

140

4. OVERFITTING 4.3, VALIDATION

discussed in Section 2.3.2 (also the blue curve in Figure 4.8, from right to left),
which shows how the expected ont-of-sample error goes down as the number
of training data points goes up . The fact that more training data lead to a
better final hypothesis has been extensively verified empirically, although it is
challenging to prove theoretically.

Restoring 7. Although the learning curve
suggests that taking out K data points for
validation and using only N — K for train-
ing will cost us in terms of E, ;. we do not
have to pay that price! The purpose of vali-

dation is to estimate the out-of-sample per- ¥
formance, and E., happens to be a good T .
estimate of £, (g). This does not mean

that we have to output g as our final hy- I_

pothesis, The primary goal is to get the

L L
hest possible hypothesis. so we should out-
E the hyneckedty i g Ew(gr)
put g, the hypothesis trained on the en-

tire set 0. The secondary goal is to esti- Figure 4.9; Using & valida-
mate F,,. which is what validation allows tion set to estimate B
ns ta do. Based on our discussion of learn-

ing curves, E . lg) < E,.lg), so

Eouilg) = Eout i.!ﬂ = Eml{ﬂ_li' + (?]i:,') # {‘L]ﬂ}

The first inequality is subdued becanse it was not rigorously proved. If we frst
train with N — K data points, validate with the remaining K data points and
then retrain using all the data to get g, the validation error we got will likely
still be bhetter at estimating E,;(g) than the estimate using the VC-bound
with Ei,(g), especially for large hypothesis sets with big dye.

So far, we have treated the validation set as a way to estimate Eye, without
involving it in any decisions that affect the learning process, Estimating E,
is a useful role by itself - a customer would typically want to know how good
the final hypothesis is (in fact, the inequalities in (4.10) suggest that the
validation error is a pessimistic estimate of E,y, S0 your customer is likely to
be pleasantly surprised when he tries your system on new data). However, as
we will see next, an important role of a validation set is in fact to guide the -
learning process. That's what distinguishes a validation set from & test set.

4.3.2 Model Selection —

Hy far, the most important use of validation is for model selection. This could
mean the choice between a linear model and a nonfinear model, the 'ﬂhm of
the order of polynomial in a model, the choice of the value of a regularization

141

4. OVERFITTING 4.3. VaLIDATION

=

5

Expected Error
£

Eval [die)

] 15
Validation Set Size, &

Figure 4.1{): Optimistic bias of the validation error when using a validation
set for the model selected.

parameter, or any other choice that affects the learning process. In almost
every learning situation, there are some choices to be made and we need a
principled way of making these choices.

The leap is to realize that validation can be used to estimate the out-of-
sample error for more than one model, Suppose we have M models H;. .. ., Har.
Validation can be used to select one of these models, Use the training set Dy,
to learn a final hypothesis g;, for each model. Now evaluate each model on
the validation set to obtain the validation errors Eq, .-, By, where

B =Bl m=1.., M.

The validation errors estimate the out-of-sample ervor E,,, (g,) for each H,,.

Exercise 4.8
Is E. an unbiased estimate for the out-of-sample error E. (5,17

It is now a simple matter to select the model with lowest validation error.
Let m*® be the index of the model which achieves the minimum validation
error. So for Hoye, Eip- < By form=1,...,1 M. The model H,,.- is the model
selected based on the validation errors, Note that E,,. is no longer an unbiased
estimate of E . (g; .). Since we selected the model with minimum validation
error, E.. will have an optimistic bias. This optimistic bias when selecting
between Hz and H is illustrated in Figure 4.10, using the experimental design
described in Exercise 4.2 with @ =3,07=04and N =35.

& o —

Referring to Figure 4.10, why are both curves increasing with K7 Why do
they converge to each other with increasing K7

142

4. OVERFITTING 4.3, VALIDATION

How good is the generalization error for this entire process of model selection
using validation? Consider a new model Hy. consisting of the final hypotheses
learned from the training data using each model Hy, ..., Har:
Hua = {67920, g3 }-

Model selection using the validation set chose one of the hypotheses in Hou
based on its performance on D). Since the model M, was obtained before
ever looking at the data in the validation set, this process is entirely equivalent
to learning a hypothesis from Hyy using the data in Dy, The validation

ertors Evaleg,) are ‘in-sample’ errors for this learning process and so we may
apply the VC bound for finite hypothesis sets, with [H.| = M:

Boultne) € Boildia) 40 (13%) ; (4.11)

What if we didn't use a validation set to choose the model? One alternative
would be to use the in-sample errors from each model as the model selection
criterion. Specifically, pick the model which gives a final hypothesis with min-
imum in-sample error. This is equivalent to picking the hypothesis with mini-
mum in-sample error from the grand model which contains all the hypotheses
in each of the M original models. If we want a bound on the out-of-sample
error for the final hypothesis that results from this selection. we need to apply
the VC-penalty for this grand hypothesis set which is the union of the M
livpothesis sets (see Problem 2.14), Since this grand hypothesis set can have
a huge VC-dimension, the bound in (4.11) will generally be tighter,

The goal of model selection is to se-
lect the best model and output the best - -‘": -'-
hypothesis from that model. Specifi-
cally, we want to select the model m for n"
which E.u(gw) will be minimum when
we retrain with all the data. Model se-

lection using a validation set relies on the I E, E;--- E

leap of faith that if E ¢ (9m) 18 minimum,

then E. . lg;,) is also minimum. The val- {.ﬂ"-'{:. Ehmﬁ]
idation errors E,, estimate E. (g,), 5o ’.
modulo our leap of faith, the validation .

set should pick the right model. No mat- Y

ter which model m* is selected, however, Gm*

based on the discussion of learning curves Figure 4.11: Using a validation
in the previous section, we should not out- gt far model selection

put .. as the final hypothesis. Rather,
once m" is selected using validation, learn using all the data and output gu-.
which satishies

Eout{gm=) = Eout(§5s) < Bl) + 0 (v i_nﬁ}l) g {4'12}

Again, the first inequality is subdued because we didn't prove it.

143

4. OVERFITTING 4.3, Varparion

(.56 /mlidatiuu: Hene

- | pasr—
152 validation: g,-

Expected F

] 3

b 15
Validation Set Size, K
Figure 4.12: Model selection between Ha and Hy, using a validation set. The
solid black line uses Ei, for model selection, which always selects Hs. The
dotted line shows the optimal moedel selection, if we could select the model
based on the true out-of-sample error. This is unachievable, but a useful

benchmark. The best performer is clearly the validation set, outputting ge-.
For suitable K, even gi,,- is better than in-sample selection.

Continuing our experiment from Figure 4.10, we evaluate the out-of-sample
performance when using a validation set to select between the models Ha
and Mg, The results are shown in Figure 4.12. Validation is a clear winner
over using Fy, for model selection.

Exercise 4.10

{a) From Figure 4.12, E[E,..(4;,-)| is initially decreasing. How can this
be, if E|[F.ui (g5,)] is increasing in K for each m?

(b} From Figure 4.12 we see that E[Euu (g)] is initially decreasing, and
then it starts to increase. What are the possible reasons for this?

{c) When K = 1, E{Euai(@m-)] < E[Eoui(gm-)]. How can this be, if the
learning curves for both models are decreasing?

Example 4.3. We can use a validation set to select the value of the reg
ularization parameter in the augmented error of (4.6). Although the most
important part of a model is the hypothesis set, every hypothesis set has an
associated learning algorithm which selects the final hypothesis g, Two mod-
els may be different only in their learning algorithm, while working with the
same hypothesis set. Changing the value of A in the augmented error changes
the leartiing algorithim (the eriterion by which g is selected) and effectively
changes the model,

Based on this discussion, consider the M different models corresponding to
the same hypothesis set H but with M different choices for A in the augmented
error. So, we have (H, M), (H, A0, (M. Anr) as our M different models. We

144

4, OVERFITTING 4.3. VALIDATION

may, for example, choose Ay = 0L Az = 0.0, A = 002, .., Ay = 10. Using &
validation set to choose one of these M models amounts to determining the
value of A to within a resolution of 0.01. O

We have analyzed validation for model selection based on a finite number of
models. If validation is used to choose the value of a parameter, for example A
as in the previous example, then the value of M will depend on the resolution
to which we determine that parameter. In the limit, the selection is actually
among an infinite number of models since the value of A can be any real
number. What happens to bounds like (4.11) and (4.12) which depend on Af?
Just as the Hoeffding bound for a finite hypothesis set did not collapse when
we moved to infinite hypothesis sets with finite VC-dimension, bounds like
(4.11) and ({4.12) will not completely collapse either. We can derive VC-type
bounds here too, becanse even though there are an infinite number of models,
these models are all very similar; they differ only slightly in the value of A, As
a rule of thumb, what matters is the number of parameters we are trying to
set. If we have only one or a few parameters, the estimates based on a decent-
sized validation set would be reliable. The more choices we make based on the
same validation set, the more ‘contaminated’ the validation set becomes and
the less reliable its estimates will be. The more we use the validation set to
fine tune the model, the more the validation set becomes like a trotning set
used to ‘learn the right model’; and we all know how limited a training set is
in its ability to estimate Foy.

You will be hard pressed to find a serious learning problem in which valida-
tion is not used. Validation is a conceptually simple technique, easy to apply
in almost any setting, and requires no specific knowledge about the details of
a model, The main drawback is the reduced size of the training set, but that
can be significantly mitigated through a modified version of validation which
we discuss next.

4.3.3 Cross Validation

Validation relies on the following chain of reasoning,

Eﬂu! [H] == Er.-uT ':.'J'- :' = Eﬁl' {y }"'
|small K {large R’}

which highlights the dilemma we face in trying to select K. We are going to
output g. When K is large, there is a discrepancy between the two “'flt'u_t-'
sample errors Fyelg) (which E.y directly estimates) and Eoulg) {which is
the final error when we learn using all the data D). We wonld like to choose &K
as small as possible in order to minimize the discrepancy between Eoulg)
and E,,(g): ideally K = 1. However, if we make this choice, we]ﬂ*’ the
reliability of the validation estimate as the bound on the RHS of (4.9) becomes
lhuge. The validation error E, (g) will still be an unbiased estimate ﬂfEuﬂ{_;!T}

145

1. OVERFITTING 4.3, VALIDATION

(g~ is trained on N — 1 points), but it will be so unreliable as to be useless
since it is based on only one data point. This brings us to the cross validation
estimate of out-of-sample error. We will focus on the leave-one-out version
which corresponds to a validation set of size & = 1, and is also the easiest
case to illustrate. More popular versions typically use larger K, but the essence
of the method is the same,

There are N ways to partition the data into a training et of size N — 1
and a validation set of size 1. Specifically, let

Dy = (21,91)1+ - o (X m1s -1)i ks (Rn1s Ynti he s (Xx.un)
be the data set D after leaving ont data point (x,,, i,), which has been shaded
in red. Denate the final hypothesis learned from D, by g;,. Let e, be the error
made by g, on its validation set which is just a single data point {(x,, 1,)}:

&y = E‘."!I.[Lq;;':l = E(ﬂ;.[xni-yn] .

The cross validation estimate is the average value of the e, s,

R
El.:v = E, ZE'“.

n=|]
il
2 _._———-“—E"i
Y = |
|
= T T

Figure 4.13: Hlustration of leave-one-out cross validation for a linear
fit using three data points. The average of the three red errors
obtained by the linear fits leaving out one data point at a time is B,

Figure 4.13 illustrates cross validation on a simple example. Each e, is a
wild, yet unbiased estimate for the corresponding Ey (¥), which follows after
setting K = 1 in (4.8). With cross validation, we have N functions RO)
together with the N error estimates e;.. ... ex. The hope s that these N
errors. together would be almost equivalent to estimating E,,,, on a reliable
validation set of size N, while at the same time we managed to use N — 1
Points to obtain each g,. Let's try to understand why Egy is a good estimator

Df Eﬂut #

LG

4, OVERFITTING 4.3. VaLipaTion

First and foremost, E., is an unbiased estimator of ‘Eulg)’. We have
to be a little careful here because we don't have a single hypothesis g, as we
did when using a single validation set. Depending on the (X, ys) that was
taken out, each g, can be a different hypothesis. To understand the sense in
which E., estimates Eou, we need to revisit the concept of the learning curve,

Ideally, we would like to know Euy(g). The final hypothesis g is the result
of learning on a random data set P of size N. It is almost as useful to know the
erpected performance of your model when you learn on a data set of size N;
the hypothesis g is just one such instance of learning on a data set of size IV,
This expected performance averaged over data sets of size N, when viewed
as a function of N, is exactly the learning curve shown in Figure 4.2. More
formally, for a given model, let

E‘uut{a"'"r] =2 E?[Ecmu{g}'?

be the expectation (over data sets T of size N) of the out-of-sample error
produced by the model. The expected value of E.. is exactly E,u (N — 1),
This is true because it is true for each individual validation error e,:

Ep iEnl . IEP._ E{x.;.u..'l ée{y; {In}-'ﬂn,]] J
= E["niEuuL':y;‘}it
= E|1||:|I I:,*ﬁ"r = 1,:'-

Since this equality holds for each e,,, it also holds for the average. We highlight
this result by making it a theorem.

Theorem 4.4, E,, is an unbiased estimate of E, (N — 1) (the expectation
of the model performance, E[E,,|, over data sets of size N — 1.

Now that we have our eross validation
estimate of E., there is no need to out-
put any of the g, as our final hypothesis. *
We might as well squeeze every last drop D *
of performance and retrain using the entire

data set D, outputting g as the final hy- -

; . i , . (e TRCY| ET
pothesis and getting the benefit of going l l
from N — | to N on the learning curve, &

In this case, the cross validation estimate
will on average be an upper estimate for
the out-of-sample error: E . (g) < E., 50
expect to be pleasantly surprised, albeit
slightly. Figure 4147 Using
With just simple validation and a val- dation to estimate Eou

idation set of size K = 1, we know that

the validation estimate will not be reliable. How reliable is the eross valida-
tion estimate E..7 We can measure the reliability using the variance of E"‘."

147

4. OVERFITTING 4.3. VALIDATION

Unfortunately, while we were able to pin down the expectation of E.,. the
variance is not so easy.

If the N cross validation errors ey, ..., ey were equivalent to N errors on a
totally separate validation set of size N, then E., would indeed be a reliable
estimate, for decent-sized N. The equivalence wonld hold if the individual e,,’s
were independent of each other. Of course, this is too optimistic. Consider
two validation errors eq, e,,. The validation error e, depends on g, which was
trained on data containing (%, jm). Thus, e, has a dependency on (%,).
The validation error ey, is computed using (X,) directly, and so it also
has a dependency on (X, ym). Consequently, there is a possible correlation
hetween e, and ey, through the data point (%,,. ¥). That correlation wouldn't
be there if we were validating a single hypothesis using N fresh (independent)
data points.

How much worse is the cross validation estimate as compared to an esti-
mate based on a truly independent set of N validation errors? A VC-type
probabilistic bound, or even computation of the asymptotic variance of the
cross validation estimate (Problem 4.23), is challenging. One way to quantify
the reliability of E.. is to compute how many fresh validation data points
would have a comparable reliability to E.,. and Problem 4.24 discusses one
way to do this. There are two extremes for this effective size. On the high end
is N, which means that the cross validation errors are essentially independent.
On the low end is 1, which means that ., is only as good as anv single one
of the individual cross validation errors e,,, i.e., the cross validation errors are
totally dependent. While one cannot prove anything theoretically, in practice
the reliability of E., is much closer to the higher end.

£y Fex

vl i 1

| N
Effective number of fresh examples
giving a comparable estimate of £,

Cross validation for model selection. In Figure 4.11, the estimates E,,
for the out-of-sample error of model H,,, were obtained using the validation set,
Instead, we may use cross validation estimates to obtain Eo: use eross valida-
tion to obtain estimates of the out-of-sample error for each model H Visiny PLEf
and select the model with the smallest cross validation error. Now. train this
model selected by cross validation using all the data to output a final hypoth-
esis, making the usual leap of faith that E,..(g") tracks £, (g) well,

Example 4.5. In Figure 4.13, we illustrated cross validation for estimat-
ing Eoue of a linear model (h(x) = ax + b} using a simple experiment with
three data points generated from a constant target function with noise. We
now consider a second model, the constant model (h{z) =). We can also
use cross validation to estimate K., for the constant model, illustrated in
Figure 4.15.

144

1. OVERFITTING 4.3. VaumaTion

x 4 5

Figure 4.15: Leave-one-out cross validation error {or a constant fit.

If we use the in-sample error after fitting all the data (three points), then
the linear model wins because it can use its additional degree of freedom to
fit the data better. The same is true with the cross validation data sets of size
two — the linear model has perfect in-sample ervor, But, with eross validation,
what matters is the error on the outstanding point in each of these fits. Even
to the naked eve, the average of the cross validation errors is smaller for the
constant model which obtained FE., = 0.065 versus E., = 0.184 for the linear
model. The constant model wins, according to cross validation. The constant
maddel also has lower ¢ and so cross validation selected the correct model
in this example. O

One important use of validation is to estimate the optimal regularization
parameter A, as described in Example 4.3. We can use cross validation for the
same purpose as summarized in the algorithm below.

Cross validation for selecting A:
1: Detine M models by choosing different values for A in the
angmented error: (H, A) (H, Aa) ooy (H, Anr)
2: for each model m=1,..., M do
Use the cross validation module in Figure 4.14 to esti-
mate E..(m), the cross validation ervor for model m.
4: Select the model m* with minimum Eo (m*).
5 Use model (H, Ay-) and all the data D to obtain the fi-
nal hypothesis g,,-. Effectively, you have estimated the
optimal A,

We see from Figure 4.14 that estimating E,., for just a single model requires N
rounds of learning on Dy, ..., Dy, each of size N — 1. So the cross validation

algorithm above requires M'N ronmds of learning, This-is & formidable task.

If we could analytically obtain E,,, that would be a big bonus, but analytic
results are often difficult to come by for cross validation. One exception is
in the case of linear models, where we are able to derive an exact analytic
formula for the cross validation estimate.

149

4. OVERFITTING 4.3, VALIDATION

Analytic computation of E., for linear models. Recall that for linear
regression with weight decay, w,., = (22 + Al)"'2Z", and the in-sample
predictions are

y = H(A)y.
where H(A) = Z(Z"Z + Al)7'Z". Given H, ¥, and y, it turns out that we can
analytically compute the cross validation estimate as:

L -t)
EI_TZ](]—_-W)) (4.13)

Natice that the cross validation estimate is very similar to the in-sample error,
B = % En(.’}" — yn)?, differing only by a normalization of each term in the
sum by a factor 1/(1 — H,,,,(A))%, One use for this analytic formula is that it
can be directly optimized to obtain the best regularization parameter A. A
proof of this remarkable formula is given in Problem 4,26,

Even when we cannot derive such an analvtic characterization of cross
validation, the technique widely results in good out-of-sample error estimates
in practice, and so the computational burden is often worth enduring. Also,
as with using a validation set. cross validation applies in almost any setting
without requiring specific knowledge about the details of the models.

So far, we have lived in a world of unlimited computation, and all that
mattered was out-of-sample error; in reality, computation time can be of con-
sequence, especially with huge data sets. For this reason, leave-one-out cross
validation may not be the method of choice. A popular derivative of leave-
one-out cross validation is V-fold cross validation.® In V-fold cross validation,
the data are partitioned into V' disjoint sets (or folds) Dy, ..., Dy, each of size
approximately N/1V': each set D, in this partition serves as a validation set to
compute a validation error for a hypothesis g learned on a training set which
is the complement of the validation set, D Y Dy So, you always validate a
hypothesis on data that was not used for training that particular hypothesis.
The V-fold cross validation error is the average of the V validation errors that
are obtained, one from each validation set D,. Leave-one-out cross validation
15 the same as N-fold cross validation. The gain from choosing V' <= N is
computational. The drawback is that vou will be estimating £, for a hy-
pothesis ¢ trained on less data (as compared with leave-one-out) and so the
discrepancy between E,.;(g) and E. (g) will be larger. A common choice in
practice is 10-fold cross validation, and one of the folds is illustrated below.

fb)
Dy Dy D3 Dy Dy Dy Dy Dy Do Dy
L i S— L I i | L
train validate train

*Stability problems have also been teported in leave-one-out.
FSome authors call it K-fold cross validation, it we choose V' so as not to confuse with
the size of the validation set K.

4. OVERFITTING 4.3, VALIDATION

4.3.4 Theory Versus Practice

Both validation and cross validation present challenges for the mathematical
theory of learning, similar to the challenges presented by regularization, The
theory of generalization, in particular the VO analysis, forms the foundation
for learnability. It provides us with gnidelines under which it is possible to
make a generalization conclusion with high probability. It is not straightfor-
ward, and sometimes not possible, to rigorously carry these conclusions over
to the analysis of validation, cross validation, or regularization. What is pos-
sible, and indeed quite effective, is to use the theory as a guideline. In the
case of regularization, constraining the choice of a hypothesis leads to bet-
ter generalization, as we would intuitively expect, even il the hypothesis set
remains technically the same. In the case of validation, making a cheice for
few parameters does not overly contaminate the validation estimate of E, ..
even if the VO guarantee for these estimates is too weak. In the case of cross
validation, the benefit of averaging several validation errors is observed. even
if the estimates are not independent.

Although these techniques were based on sound theoretical foundation,
they are to be considered hewristics because they do not have a full mathe-
matical justification in the general case. Learning from data is an empirical
task with theoretical underpinnings. We prove what we can prove, but we use
the theory as a guideline when we don't have a conclusive proof. In a practical
application, heuristics may win over a rigorous approach that makes unrealis-
tic assumptions. The only way to be convinced about what works and what
doesn’t in a given situation is to trv out the techniques and see for yourself.
The basic message in this chapter can be summarized as follows.

1. Noise (stochastic or deterministic) affects learning
adversely, leading to overfitting.

2. Regularization helps to prevent overfitting by con-
straining the model, reducing the impact of the noise,
while still giving us flexibility to fit the data.

3. Validation and cross validation are useful technigques
for estimating E,,. One important use of valida-
tion is model selection, in particular to estimate the
amount of regularization to use.

Example 4.6. We illustrate validation on the handwritten digit classification

task of deciding whether a digit is 1 or not (see also Example 3.1) based on the
two features which measure the symmetry and average intensity of the digit.
The data is shown in Figure 4.16(a).

4. OVERFITTING 4.3. VALIDATION

Symmetry

T T
Average Intensity # Fentures Vsl
(a) Digits classification task (B)YError curves

Figure 4.16: (a) The digits data of which 500 are selected as the training
set. (h) The data are transformed via the 5th order polynomial transform
to a 20-dimensional feature vector. We show the performance curves as we
vary the mumber of these features used for classification.

We have randomly selected 500 data points as the training data and the
remaining are useéd as a test set for evaluation. We considered a nonlinear
feature transform to a 5th order polynomial feature space:

2 54 ST, |

) g B -
(Lyxy, 22} = (Lizy 20,27, ;g .r;..r'f. TyTay .0 2], B T2, .r';',rg..:'[:rz, T1I5, ry).

Figure 4.16(b) shows the in-sample error as you use more of the transformed
features, increasing the dimension from 1 to 20. As you add more dimensions
{inerease the complexity of the model), the in-sample error drops, as expected.
The out-of-sample error drops at first, and then starts to increase, as we hit
the approximation-generalization tradeoff. The leave-one-out cross validation
error tracks the behavior of the out-of-sample error quite well. If we were to
pick a model based on the in-sample error, we would use all 20 dimensions,
The cross validation error is minimized between 5-7 feature dimensions: we
take 6 feature dimensions as the model selected by eross validation. The table
below snmmarizes the resulting performance metrics:
| Bin Eau
No Validation 0% 2.5%
Cross Validation | 0.8% 1.5%

Cross validation results in a performance improvement of about 1%, which is
A massive relative improvement (40% reduction in error rate).

Exercise 4.11

In'this particular experiment, the blue curve (E..] is sometimes below and
sometimes above the the red curve (E,,,). If we repeated this experiment
many times, and plotted the average blue and red curves, would you expect
the blue curve to lie above or below the red curve?

152

4. OVERFITTING 4.3. VALIDATION

It is iluminating to see the actnal classification boundaries learned with and
without validation. These resulting classifiers, together with the 500 in-sample
data points, are shown in the next figure,

Svmmetry
Svmmetry

Average Intensity Avernge Intensity

20-dim classifier (no validation) G-dim classifier [LOCO-CV)
By = 0% Ey. = 0:8%
Foa = 2.5% Eoup = 1.5%

It iz elear that the worse out-of-spmple performanee of the elassifier picked
without validation is due to the overfitting of a few noisy points in the training
data. While the training data is perfectly separated, the shape of the resulting
houndary seems highly contorted, which is a symptom of overfitting. Does this
remind vou of the first example that opened the chapter? There, albeit in a
toy example, we similarly obtained a highly contorted fit. As you can see,
overfitting is real, and here to stay! O

4. OVERFITTING 4.4. PROBLEMS

4.4 Problems

Problem 4.1 Plot the monomials of order i, ¢s(z) = z'. As you increase
the order, does this correspond to the intuitive notion of increasing complexity?

Problem 4.2 Consider the feature transform z — [Lo(z), L1 (), La(2)]”
and the linear model h(z) = w™z. For the hypothesis with w = [1, -1, 1",
what is h(z) explicitly as a function of z. What s its degree?

Problem 4.3 The Legendre Polynomials are a family of orthogonal
polynomials which are useful for regression. The first two Legendre Polynomials
are Lo(x) = 1, L1(z) = x. The higher order Legendre Polynomials are defined
by the recursion:

2k -1 k-1
xLi_1(z) — 5

(a) What are the first six Legendre Polynomials? Use the recursion to de-
velop an efficient algorithm to compute Lo(z),..., Lx(x) given z. Your
algorithm should run in time linear in K. Plot the first six Legendre
polynomials.

Lk(l‘) = Lk_g(fl')A

(b) Show that Ly () is a linear combination of monomials z*, 2572 (ei-
ther all odd or all even order, with highest order k). Thus,

Li(—z) = (~1) Ly ().

{(c) Show that #‘“"“—f) = &Li(x) = Li—1(z). [Hint: use induction.]

d
(d) Use part (c) to show that L, satisfies Legendre’s differential equation
- (z 1)§dx =k(k+1)Ly(x).

This means that the Legendre Polynomials are eigenfunctions of a Her-
mitian linear differential operator and, from Sturm-Liouville theory, they
form an orthogonal basis for continuous functions on [-1,1].

(€) Use the recurrence to show directly the orthogonality property:

/1 dw Lk(x)Lé(I) _ {0 \ E # ka

7T (=k

[Hint: use induction on k, with ¢ < k. Use the recurrence for Ly and
consider separately the four cases ¢ — kk—1k—2and¥¢<k—2. For
the case £ = k you will need to compute the integral fjl dz 2° P2 (x).
In order to do this, you could use the differential equation in part (c),
multiply by xLi. and then integrate both sides (the LHS can be integrated
by parts). Now solve the resulting equation for fjl dz z*PZ_|(z).]

154

4. OVERFITTING 4.4. PROBLEMS

Problem 4.4 This problem is a detailed version of Exercise 4.2. We set up
an experimental framework which the reader may use to study various aspects
of overfitting. The input space is X = [—1,1], with uniform input probability
density, P(z) = 3. We consider the two models H2 and H1o. The target func-
tion is a polynomial of degree Qy, which we write as f(z) = Z?:fo aqLq(x),
where Lg(z) are the Legendre polynomials. We use the Legendre polynomials
because they are a convenient orthogonal basis for the polynomials on [—1, 1]
(see Section 4.2 and Problem 4.3 for some basic information on Legendre poly-
nomials). The data setis D = (z1,41),--., (zn,yn), where g, = flzn)+oen
and e, are iid standard Normal random variates.

For a single experiment, with specified values for Q, N, o, generate a random
degree-Q); target function by selecting coefficients a, independently from a
standard Normal, rescaling them so that Ea, [fQ] = 1. Generate a data set,
selecting z1,...,zn independently from P(z) and y,, = f(#,) + 0en. Let gy
and gio be the best fit hypotheses to the data from H2 and H1o respectively,
with respective out-of-sample errors Eout(g2) and Eoui(gio).

(a) Why do we normalize f7 [Hint: how would you interpret ¢ 7]
(b) How can we obtain g2, g10? [Hint: pose the problem as linear regression
and use the technology from Chapter 3.]

(c) How can we compute E,,; analytically for a given g7

(d) Vary Q¢, N, o and for each combination of parameters, run a large num-
ber of experiments, each time computing Fout(g2) and Eous(gio). Aver-
aging these out-of-sample errors gives estimates of the expected out-of-
sample error for the given learning scenario (Q, N, o) using Ha2 and Hio.
Let

Eouwi(H2) = average over experiments(Eoue(g2))

+
Eout(Hi0) = average over experiments(Eout(g10))-

Define the overfit measure Eoui(H10) — Eous(H2). When is the over-
fit measure significantly positive (i.e., overfitting is serious) as opposed
to significantly negative? Try the choices Q5 € {1,2,...,100}, N €
{20,25,...,120}, 0% € {0,0.05,0.1,...,2}.
Explain your observations.

(e) Why do we take the average over many experiments? Use the variance
to select an acceptable number of experiments to average over.

(f) Repeat this experiment for classification, where the target function is a

noisy perceptron, f = sign (Zl?:fl aqLq(x) + e). Notice that ao = 0,

and the a4's should be normalized so that Eq [(Z?zfl aqu(ﬂE))2] =1

For classification, the models Hy, H1o contain the sign of the 2nd-and
10th order polynomials respectively. You may use a learning algorithm
for non-separable data from Chapter 3.

155

4. OVERFITTING 4.4. PROBLEMS

Problem 4.5 If A < () in the augmented error Eug(w) = Eifw)+Aw w,
what soft order constraint does this correspond to? [Hint: A < 0 encourages
large weights.|

Problem 4.6 In the augmented error minimization with I' = Iand A =0

{a) Show that |lwr|| < [[wiinl|, justifying the term weight decay. [Hint:
start by assuming that |[weeg|| > | Wy || and derive a contradiction. |
In fact a stronger statement holds: ||wi.| is decreasing in A,

(b) Explicitly verify this for linear models. [Hint:
WiegWrog = UT (272 + AI) P,

where u = Z'y. Show that %'7 + Al has the same eigenvectors with
correspondingly larger eigenvalues as 277 Expand u in the eigenbasis of
Z°Z. For a matrix A, how are the eigenvectors and eigenvalues of A 2
related to those of A 7|

Problem 4.7 Show that the in-sample error
1 5 :
Em{wrr_-g] = ?}r {I- H':-}I-]]z,'hII

from Example 4.2 is a decreasing function of A,

To do so, let the SVD of Z = UI'V™ and let 2% have eigenvalues . G
Define the vector a = U'y, Show that

o 3 2
Elrlfwrz'gj = Eluiwimf'f EU.-I (J == _ﬁl—) .

=1 ¥

and proceed from there.

Problem 4.8 In the augmented errar minimization with ' — land & =0
assume that [, is differentiable and use gradient descent to minimize Eougt

wit+1) & wit) — 1V E.gz(w).
Show that the update rule above is the same as

wit 1)+ (T =AWty =7V E . (w).

Note: This is the origin of the name weight decay’ wit] decays before being
updated by the gradient of £, .

15t

4. OVERFITTING 4.4. ProvLEMS

Problem 4.9 In Tikhonov regularization, the regularized weights are given
by Wiy = (Z'2 + AI'T) ' Z7y. The Tikhonov regularizer I" is a k x (d + 1)
matrix, each row corresponding to a d + 1 dimensional vector. Each row of 7
corresponds to a d + 1 dimensional vector (the first component is 1). Far each
row of ', construct a wirtual example (=,,0) for i = 1,.,. &k, where 2; is the
vector obtained from the ith row of 1" after scaling it by v/, and the target
value is {1, Add these k virtual examples to the data, to construct an augmented
data set, and consider non-regularized regression with this augmented data.

e i o
[a) Show that, for the avgmented data, Z,,, = [\.-'T l‘] and Yaug = [ﬂ]

(b) Show that solving the least squares problem with Z... and y.., results

in the same regularized weight wi,, 2. Wy = {ZL,EZNM}"ZLMMM,

This result may be interpreted as follows: an equivalent way to accomplish
weight-decay-type regularization with linear models is to create a bunch of
virtual examples all of whose target values are zero.

Problem 4.10 In this problem, you will investigate the relationship
between the soft order constraint and the augmented error. The regularized
weight W is a solution to

min Ei,{w) subject to w' "' T'w < .

(a) W w " Twyy < O, then what is wypy?
(b)Y If wii, " Twy, = ', the situation is illustrated below,

Ly

e

)

The constraint is satisfied in the shaded region and the contours of con-
stant [, are the ellipsoids (why ellipsoids?). What is 1|:-r';',.ﬂ|"j T'eg?

(€} Show that with
| . 2
)"I'.' = i(q wn.w-gt' lf"-'Ii\u:l l“'rl'n.‘: B
Wioy minimizes Ei(w) + Aew 17w, [Hint; use the previous part to
solve for W, as an equality constrained optimization problem using the
method of Lagrange multipliers |

{continued on next page)

4. OVERFITTING 4.4, PrROBLEMS

(d) Show that the following hold for Aq:

(i) 1wy, " Pwiiy, < € then A = 0 (wy, itself satisfies the constraint).
(i) H wi, " T'win = €, then A = 0 (the penalty term is positive).
(iii) W wii, I Twyiy = €, then A is a strictly decreasing function of .

[Hint: show that & < 1) for C € [0, W), ["T'wii).]

Problem 4.11 Far the linear model in Exercise 4.2, the target function is
a polynomial of degree (), the model is Hg, with polynomials up to order ().
Assume @ = Q. Wi = (2°4) 7 '27y. and ¥ = Zw; + €, where wy is the
target function and Z is the matrix containing the transformed data,

(a) Show that wy, = wr+ (Z7Z)7'Z%. What is the average function 57
Show that bias = +°
(b) Show that

o

fo3 1 Ex
=T trace By [To(- 27Z) ™"
e = = trace Ez | rI:‘I,'__f ™Y,
where g = E[®()07(z)]. [Hints: var = E[(g'"" — §)°|; first take the
expectation with respect to e, then with respect to ®(z), the test point,
and the last remaining expectation will be with respect to 7. You will
need the cyclic property of the trace |

et (@4 1)

N)
[Hint: L2772 = £ 57" @z,)8 () is the in-sample estimate of Sy,
By the law of large numbers, {2772 = X4 + o(1).]

(c) Argue that to first order in &, var =~

For the well specified linear model, the bias is zero and the variance is increasing
as the model gets larger (€ increases), but decreasing in V.

Problem 4.12 Use the setup in Problem 4.11 with @ > ;. Caonsider
regression with weight decay using a linear mode! H and an input probability
distribution such that E[xx"] = L, where x € R*, The regularized weights are
Biven by wio = (272 + M) 72"y, where y = Zwy + &,

(2) Show that wi., = wi — MZTZ+ A" 'wy & (Z7Z + ALV 177,
(b) Show that, to first order in s

. A :
bias = o +qmi|“’l| +
var x E [erace(H(A)],

where HiA) = Z(2772 + A1) '2"

4. OVERFITTING 4.4, ProprEMms

If we plot the bias and var, we get a figure
that is very similar to Figure 2.3, where _—
the tradeoff was based on fit and com- i) N
plexity rather than bias and var. Here, the
bias is increasing in A (as expected) and E
in ||wel|; the variance is decreasing in A
When A = (), trace(H*(A)) = @ + | and
so trace(H(\)} appears to be playing the
role of an effective number of parameters. Regularization Paratmster, A

Problem 4.13 Within the linear regression setting, many attempts have
been made to quantify the effective number of parameters in a model, Three
possibilities are:

(i) daw(A) = 2trace(H{A)} = trace{H*{A))
(iii} dug{) = trace(H(X))
(i} du{A) = trace{H2(AY)

where H(A) = Z(Z7Z+ A1) "Z". To obtain dyr, one must first compute H{A)
as though you are doing regression, One can then heuristically use d.g in place
of o in the VC-bound,

{a) When A = 0, show that for all three choices, duy = d + 1, where d is the
dimension in the Z space,

(B) When A = 0, show that () < dus < d 4+ 1 and d.yg is decreasing in A for
all three choices, [Hint: Use the singular value decompasition.]

Problem 4.14 The observed target values y can be separated into the
true target values f and the noise €, ¥ = [+ &. The components of e are jid
with variance «* and expectation (). For linear regression with weight decay
regularization, by taking the expected value of the in-sample error in (4.2),
show that
2
E.[EBw] = %r' (I— il{}.:l".lzf + %er:u{f - H{Jﬁ]}J.
l .- oyl 2 tlegt
= ST -HONf+o (1 o T\r)

where g = 2trace(H(A)) — rr;1{'1'[|i}|:}|.]j, as defined in Problem 4a13ﬁ] and
H{MN =Z(Z7Z+ Al) '

{continued on next page)

4. OVERFITTING 4.4. PROBLEMS

(a) If the noise was not overfit, what should the term involving o be, and
why?

(b} Hence, argue that the degree to which the noise has been overfit is
o2dest/N. Interpret the dependence of this result on the parameters deg
and N, to justify the use of deg as an effective number of parameters.

Problem 4.15 We further investigate deg of Problems 4.13 and 4.14. We
know that H(A) = Z(Z"Z+ AI'"T") "' Z™. When T is square and invertible, as is
usually the case (for example with weight decay, T' = T), denote Z = ZI'"'. Let
03, ...,04 be the eigenvalues of Z'Z (o7 > 0 when Z has full column rank).

(a) For deg(N\) = trace(2H(A) — H2()\)), show that

d

)\2
deff(/\) —d+1—;m
d
(b) For desr(X) = trace(H())), show that deg()\) =d+ 1 — _;) U?%

d
(c) For de(X) = trace(H?())), show that deg(X) = 3. (Tr(fhx)?'
i=0 *7?

In ali cases, for A > 0, 0 < deg(A) < d+1, deg(0) = d+1 and deg is decreasing
in A. [Hint: use the singular value decomposition 7 = ULV™, where U, V are
orthogonal and ¥ is diagonal with entries o;.]

Problem 4.16 For linear models and the general Tikhonov regularizer T
with penalty term %WTFTFW in the augmented error, show that

Wreg = (Z"Z+ AI'T) ' 2"y,
where Z is the feature matrix.
(a) Show that the in-sample predictions are
y =HW\)y,

where H(\) = Z(Z"Z + AT"T") 172"

(b) Simplify this in the case T' = Z and obtain Wreg in terms of wyi,. This is
called uniform weight decay.

Problem 4.17 To model uncertainty in the measurement of the inputs,
assume that the observed inputs x,, are the true inputs X,, perturbed by some
noise €,: the true inputs are given by Xn = X, + €. Assume that the ¢, are
independent Normal random vectors with identity covariance matrix ¢2I and

160

4. OVERFITTING 4.4. PROBLEMS

mean zero. The learning algorithm minimizes the expected in-sample error E,,
where the expectation is with respect to the uncertainty in the x,,.

1 N
Ein(W) =]Eel...eN [Ein (W)] = Eel...eN I:N Z(WT)A(— yn)Q:l .

Show that the weights Wiin which result from minimizing Ei, are equivalent
to the weights which would have been obtained using the noiseless data and
Tikhonov regularization. What are I" and A (see Problem 4.16 for the general
Tikhonov regularizer)?

One can interpret this result as follows: regularization enforces a robustness to
potential measurement errors in the inputs.

Problem 4.18 In a regression setting, assume the target function is
linear, so f(x) = w*™x, and y = Zw™ + €, where the entries in € are iid with
zero mean and variance 0. Assume a regularization term %WTZTZW and that
E[xx"] = L In this problem derive the optimal value for) as follows.

(a) Show that the average function is g(x) = H%\f(x). What is the bias?

(b) Show that var is asymptotically %. [Hint: Problem 4.12.]

{c) Use the bias and asymptotic variance to obtain an expression for E[Eout]-
Optimize this with respect to X to obtain the optimal regularization pa-
o2(d+1)

rameter. [Answer: * = .
[Nljw*|

(d) Explain the dependence of the optimal regularization parameter on the
parameters of the learning problem.

Problem 4.19 [The Lasso algorithm] Rather than a soft order constraint
on the squares of the weights, one could use the absolute values of the weights:

d
min Eji, (w) subject to Z |wi| < C.
i=0

The model is called the lasso algorithm.
(a) Formulate and implement this as a quadratic program. Use the exper-

imental design in Problem 4.4 to compare the lasso algorithm with the
quadratic penalty.

(b) What is the augmented error? Is it more convenient to optimize?

(c) Compare the weights coming from the lasso versus the quadratic penalty.
[Hint: Look at the number of non-zero weights.]

161

4. OVERFITTING 4.4. PROBLEMS

Problem 4.20 In this problem, you will explore a consistency condition
for weight decay. Suppose that we make an invertible linear transform of the
data,

Zn = AX,, Un = QYn.
Intuitively, linear regression should not be affected by a linear transform, and
this is can be seen by showing that the new optimal weights are given by a
corresponding linear transform of the old optimal weights.

(a) Suppose w minimizes the in-sample error for the original problem. Show
that for the transformed problem, the optimal weights are

W =a(A") 'w.

(b) Suppose the regularization penalty term in the augmented error is
w'X"Xw for the original data and w"Z"Zw for the transformed data.
On the original data, the regularized solution is wreg(A). Show that for
the transformed problem, the same linear transform of wyeg()) gives the
corresponding regularized weights for the transformed problem:

Wreg(A) = a(AT)_lwreg()‘)~

Problem 4.21 The Tikhonov smoothness penalty which penalizes
2
derivatives of h is Q(h) = [dz (%) . Show that, for linear models,

this reduces to a penalty of the form w'I'"I'w. What is I'?

Problem 4.22 You have a data set with 100 data points. You have
100 models each with VC-dimension 10. You set aside 25 points for validation.
You select the model which produced minimum validation error of 0.25. Give
a bound on the out-of-sample error for this selected function.

Suppose you instead trained each model on all the data and selected the func-
tion with minimum in-sample error. The resulting in-sample error is 0.15. Give
a bound on the out-of-sample error in this case. [Hint: Use the bound in
Problem 2.14 to bound the VC-dimension of the union of all the models.]

Problem 4.23 This problem investigates the covariance of the leave-one-
out cross validation errors, Covple,, em]. Assume that for well behaved models,
the learning process is ‘stable’, and so the change in the learned hypothesis
should be small, ‘O (%)’, if a new data point is added to a data set of size N.
Write g, = gV =2 + 6, and g,,, = g2 + 6, where ¢V~ is the learned
hypothesis on the data minus the nth and mth data points, and 85, d,, are the
corrections after addition of the nth and mth data points respectively.

162

4. OVERFITTING 4.4. PROBLEMS

(a) Show that Varp[Eey] = = SN | Varplea] + < SN, Covplen, em].

n#m
(b) Argue that Covplen,em] is non-zero due to the correction terms &, 6,m,.
(c) Argue that if 8,, 8, are 'O (57)", Covplen,em] is also O (4). Hence,
argue that the variance of the cross validation estimate is O ().

(d) Using the experimental design in Exercise 4.2 generate data sets of size N
to obtain a plot of Varp[E.,] versus N. What is the decay rate?

Problem 4.24 For d = 3, generate a random data set with IV points as
follows. For each point, each dimension of x has a standard Normal distribution.
Similarly, generate a (d + 1)-dimensional target weight vector wr, and set y,, =
W{ X +0€, where ¢, is noise (also from a standard Normal distribution) and &
is the noise variance; set o to 0.5.

Use linear regression with weight decay regularization to estimate wr with Wyeg.
Set the regularization parameter to 0.05/N.

(a) For N € {d+3,d+13,...,d+103}, compute the cross validation errors
e1,...,en and Ec,. Repeat the experiment (say) 10° times, maintaining
the average and variance over the experiments of e1, e; and F...

(b) How should your average of the e;'s relate to the average of the E.,’s;
how about to the average of the ez's? Support your claim using results
from your experiment.

{c) What are the contributors to the variance of the e;'s?

(d) Mf the cross validation errors were truly independent, how should the vari-
ance of the e;’s relate to the variance of the E.,’s?

(e) One measure of the effective number of fresh examples used in comput-
ing E. is the ratio of the variance of the e;'s to that of the E.,'s. Explain
why, and plot, versus N, the effective number of fresh examples (Neg)
as a percentage of N. You should find that Neg is close to N.

(f) W you increase the amount of regularization, how do you expect the ef-
fective number of examples to behave? Run an experiment to verify your
conjecture, showing the result.

Problem 4.25 When using a validation set for model selection, all models
were learned on the same Dirain of size N — K, and validated on the same
Dyar of size K. We have the VC-bound:

Eout(gm+) < Evai(gm-) + Ot/ —7)

(see Equation (4.12)).

(continued on next page)

163

4. OVERFITTING 4.4. PROBLEMS

Suppose that instead, you had no control over the validation process. So M
learners, each with their own models present you with the results of their val-
idation processes on different validation sets. Here is what you know about
each learner:

Each learner m reports to you the size of their validation set K,,,
and the validation error F.a1(m). The learners may have used dif-
ferent data sets, except that they faithfully learned on a training set
and validated on a held out validation set which was only used for
validation purposes.

As the model selector, you have to decide which learner to go with.
(a) Should you select the learner with minimum validation error? If yes, why?
If no, why not? [Hint: think VC-bound.]

(b) If all models are validated on the same validation set as described in the
text, why is it okay to select the learner with the lowest validation error?

(c) After selecting learner m* (say), show that

P[Eous(m") > Ein(m™) +¢] < MeiQe(Z”(E)7

M —262K, . “ " A
where k(€) = —z; In (7&7 S e K’”) is an “average" validation

set size.
d) Show that with probability at least 1 — 8, Eout < FEin + €7, for any €”
Y
which satisfies €* > 4/ 12:}{4‘;).

(e) Show that minm, Km < k(e) < 35 S M Kum. Is this bound better or
worse than the bound when all models use the same validation set size
(equal to the average validation set size 5 SN Km)?

Problem 4.26 in this problem, derive the formula for the exact expression
for the leave-one-out cross validation error for linear regression. Let Z be the
data matrix whose rows are the transformed data points z, = ®(xx).

(a) Show that:

N N
7’7 = Z Zn 2y = Z Znn; Hym () = ZZA_l()\)zm7
n=1 n=1

where A = A(\) = Z"Z + AI''T" and H(A\) = ZA()\)"'Z". Hence,
show that when (z,,y.) is left out, 272 — Z'Z — z,2,,and Z7y —
2Ty — zZpyn.

(b) Compute w;,, the weight vector learned when the nth data point is left
out, and show that:

A7 lz,zTA!
— —1 nén T
w, = (A + m) (Z'y — Znyn).

164

4. OVERFITTING 4.4. PROBLEMS

[Hint: use the identity (A —xx")"' = A1 4 M.]

—xTA—1x

(c) Using (a) and (b), show that w,, = w+ y"_;y"A‘lzn, where w is the

regression weight vector using all the data.

(d) The prediction on the validation point is given by zZw;,. Show that

gn - Hnnyn
1 - Hnn

T -
LWy =

" 2
(e) Show that e, = (%%) , and hence prove Equation (4.13).

Problem 4.27 Cross validation gives an accurate estimate of Eou, (N —1),
but it can be quite sensitive, leading to problems in model selection. A common
heuristic for ‘regularizing’ cross validation is to use a measure of error gy {H)
for the cross validation estimate in model selection.

(a) One choice for ocy is the standard deviation of the leave-one-out errors

divided by VN, ooy & \/Lﬁw/var(el, ..., en). Why divide by v N?

) 4
(b) For linear models, show that v Noo, = & SN (M> — E2,.

1—Hpn

(c) (i) Given the best model H*, the conservative one-sigma approach se-

lects the simplest model within oo (H*) of the best.

(i) The bound minimizing approach selects the model which minimizes
ECV(H) + UCV(H)-

Use the experimental design in Exercise 4.4 to compare these approaches

with the 'unregularized’ cross validation estimate as follows. Fix Qs = 15,

Q@ = 20, and 0 = 1. Use each of the two methods proposed here as well as

traditional cross validation to select the optimal value of the regularization

parameter for weight decay. Plot the resulting out-of-sample error for the

model selected using each method as a function of N, with N in the

range {2 x Q,3 x Q,...,10 x Q}.

165

166

Chapter 5

Three Learning Principles

The study of learning from data highlights some general principles that are
fascinating concepts in their own right. Having gone through the mathematical
analysis and empirical illustrations of the first few chapters, we have a good
foundation from which to articulate some of these principles and explain them
in concrete terms.

In this chapter, we will discuss three principles. The first one is related to
the choice of model and is called Occam’s razor. The other two are related
to data; sampling bias establishes an important principle about obtaining the
data, and data snooping establishes an important principle about handling
the data. A genuine understanding of these principles will protect you from
the most common pitfalls in learning from data, and allow you to interpret
generalization performance properly.

5.1 Occam’s Razor

Although it is not an exact quote of Einstein’s, it is often attributed to him
that “An explanation of the data should be made as simple as possible, but no
simpler.” A similar principle, Occam’s Razor, dates from the 14th century and
is attributed to William of Occam, where the ‘razor’ is meant to trim down
the explanation to the bare minimum that is consistent with the data.

In the context of learning, the penalty for model complexity which was
introduced in Section 2.2 is a manifestation of Occam’s razor. If Ein(g) = 0,
then the explanation (hypothesis) is consistent with the data. In this case,
the most plausible explanation, with the lowest estimate of Eout given in the
VC bound (2.14), happens when the complexity of the explanation (measured
by dve(H)) is as small as possible. Here is a statement of the underlying
principle.

‘ The simplest model that fits the data is also the most plausiblﬂ

167

5. THREE Leanning PriNcipLES 5.1, Occam'’s Razon

Applying this principle, we should choose as simple a model as we think we can
get away with. Although the principle that simpler is better may be intuitive,
it is neither precise nor self-evident. When we apply the principle to learning
from data, there are two basic questions to be asked.

1. What does it mean for a model to be simple?

2. How do we know that simpler is better?

Let's start with the first question. There are two distinet approaches to defin-
ing the notion of complexity, one based on a family of objects and the other
based on an individual object. We have already seen both approaches in our
analysis. The VC dimension in Chapter 2 is a measure of complexity. and it
is based on the hypothesis set H as a whole, i.e., based on a family of ohjects,
The regularization term of the augmented error in Chapter 4 is also a measure
of complexity, but in this case it is the complexity of an individual object,
namely the hvpothesis h.

The two approaches to defining complexity are not encountered only in
learning from data; they are a recurring theme whenever complexity is dis-
cussed. For instance, in information theory, entropy is a measure of complexity
based on a family of objects, while minimum deseription length is a related
measure based on individual objects. There is a reason why this is a recurring
theme, The two approaches to defining complexity are in fact related.

When we say a family of objects is complex, we mean that the family is
*big’. That is, it contains a large variety of objects. Therefore, each individual
object in the family is one of many. By contrast, a simple family of ohjects is
‘small’s it has relatively few objects, and each individual object is one of few.

Why is the sheer number of objects an indication of the level of complexity?
The reason is that both the number of objects in a family and the cotplexity
of an object are related to how many parameters are needed to specify the
object. When vou increase the number of parameters in a learning model, von
simultaneously increase how diverse # is and how complex the individual & is.
For example, consider 17th order polynomials versus 3rd order polynomials,
There is more variety in 17th order polynomials, and at the same time the
individual 17th order polynomial is more complex than a 3rd order polynomial,

The most common definitions of ohject complexity are based on the number
of bits needed to describe an object. Under such definitions. an ohject is simple
if it has a short description. Therefore, a simple object is not only intrinsically
sitnple (as it can be described succinctly), but it also has to be one af few,
since there are fewer objects that have short descriptions than there are that
have long descriptions, as a matter of simple counting.

Exercise 5.1 — .

Consider hypothesis sets 7, and 74,40 that contain Boolean functions on 10
Boolean variables, so &' = {—1.+1}"". H,; contains all Boolean functions

16&

5. THrEE LEARNING PRINCIPLES 5.1, Oocam’s Razor

which evaluate to +1 on exactly one input point, and to —1 &wm
Hion contains all Boolean functions which evaluate to +1 on exactly 100
input points, and to —1 elsewhere.

(3) How big (number of hypotheses) are H; and H 7
(b) How many bits are needed to specify one of the hypatheses in #,7
(€) How many bits are needed to specify one of the hypotheses in #497

We now address the second question. When Ocecam’s razor says that simpler
is better, it doesn’t mean simpler is more elegant. It means simpler has a
better chance of being right. Occam’s razor is abont performance, not about
aesthetics. If a complex explanation of the data performs better., we will
take it.

The argnment that simpler has a better chance of being right goes as fol-
lows. We are trying to it a hypothesis to our data T = =)= s (xw un)}
[asswme yn,'s are binary), There are fewer simple hypotheses than there are
complex ones. With complex hypotheses, there would be enough of them to
shatter xp, -+ . %Xy, 50 it is cortain that we can fit the data set regardless of
what the labels y;,-- ,yn are, even if these are completely random. There
fore, fitting the data does not mean much. If, instead, we have a simple model
with few hypotheses and we still found one that perfectly fits the dichotomy
D= {(x1.41)s++- . (xn,un)}, this is surprising, and therefore it means some-
thing.

Oceam’s Razor has been formally proved under different sets of idealized
conditions. The above argument captures the essence of these proofs; if some-
thing is less likely to happen, then when it does happen it is more significant.
Let us look at an example,

Example 5.1. Suppose that one constructs a physical theory about the con-
ductivity of a metal under various temperatures. In this theory, aside from
some constants that need to be determined, the conductivity C has a linear
dependence on the temperature T. In order to verify that the theory is correct
and to obtain the unknown constants, 3 scientists conduct the following three
experiments and present their data to vou.

conductivity

conductivity
\
canductivity

temmperature temperature ' tenperatiry
Scientist 1 Scientist 2 Scientist 3

1659

6. THREE LEARNING PRINCIPLES 1. Oocam's Razon

It is clear that Scientist 3 has produced the most convincing evidence for the
theory. If the measarements are exact, then, Scientist 2 has managed to falsify
the theory and we are back to the drawing board. What about Scientist 17
While he has not falsified the theory, has he provided any evidence for it? The
answer is no, for we can reverse the question. Suppose that the theory was not
correct, what could the data bave done to prove him wrong? Nothing, since
any two points can be joined by a line. Therefore, the model is not just likely
to fit the data in this case, it is certain to do so. This renders the fit totally
insignificant when it does happen, |

This example illustrates a concept related to Qceam’s Razor, which is the
ariom of non-falsifinbility. The axiom asserts that the data should have some
chance of falsifying a hypothesis, if we are to conclude that it can provide
evidence for the hypothesis. One way to guarantee that every data set has
some chance at falsification is for the VC dimension of the hypothesis set
to be less than N, the number of data points. This is discussed further in
Problem 5.1. Here is another example of the same concept.

Example 5.2. Financial firms try to pick good traders (predictors of whether
the market will go up or not). Suppose that each trader is tested on their
prediction (up or down) over the next 5 days and those who petlorm well will
be hired. One might think that this process should produce better and better
traders on Wall Street. Viewed as a learning problem, consider each trader
to be a prediction hypothesis. Suppose that the hiring pool is ‘complex’; we
are interviewing 2° traders who happen to be a diverse set of people such that
their predictions over the next 5 days are all different. Necessarily one of these
traders gets it all correct, and will be hired. Hiring the trader through this
process may or may not be a good thing, since the process will pick someone
even if the traders are just flipping coins to make their predictions. A perfect
predictor always exists in this group, so finding one doesn’t mean much. If we
were interviewing only two traders, and one of them made perfect predictions,
that would mean something. O

Exercise 5.2

Suppose that for 5 weeks in a row, a letter arrives in the mail that predicts
the outcome of the upcoming Monday night football game. You keenly
watch each Monday and to your surprise, the prediction is correct each
time. On the day after the fifth game, a letter arrives, stating that if you
wish to see next week's prediction, a payment of §50.00 is required. Should
vou pay?
(a) How many possible predictions of win-lose are there for & games?
{(b) If the sender wants to make sure that at least one person receives
correct predictions on all 5 games from him, how many people should
he target to begin with?

G, Tunee LEarNiNG PRINCIPLES 3.2, SAMPLING BiAs

(c) After the first letter ‘predicting’ the outcome of the first game, how
many of the original recipients does he target with the second letter?

(d) How many letters altogether will have been sent at the end of the §
weeks?
{e) If the cost of printing and mailing out each letter is $0.50, how much

would the sender make if the recipient of & correct predictions sent in
the $50.007

(f} Can you relate this situation to the growth function and the credibility
af fitting the data?

Learning from data takes Oceam’s Razor to another level, poing bevond Yas

simple as possible, but no simpler.” Indeed, we may opt for ‘a simpler fit
than possible’, namely an imperfect fit of the data using a simple model over
a perfect (it using a more complex one, The reason is that the price we pay
for a perfect fit in terms of the penalty for model complexity in (2.14) may

ke too much in comparison to the benefit of the better fit, This idea was

illustrated in Figure 3.7, and is a manifestation of overfitting. The idea is also
the rationale behind the recommended policy in Chapter 3: first try a linear

model - one of the simplest models in the arena of learning from data.

5.2 Sampling Bias

A vivid example of sunpling bias happened in the 1948 US presidential election
between Truman and Dewey, On election night, a major newspaper carried
out a telephone poll to ask people how they voted. The poll indicated that
Dewey won, and the paper was so confident about the small error bar in its
poll that it declared Dewey the winner in its headline, When the actual votes
were counted, Dewey lost — to the delight of a smiling Troman.

v g M=
QEFEATS TRUBAN

[EWEY

5. THREE LEARNING PRINCIPLES 5.2. SAMPLING Bias

This was not a case of statistical anomaly, where the newspaper was just
incredibly unlucky (remember the § in the VC bound?). It was a case where
the sample was doomed from the get-go, regardless of its size. Even if the
experiment were repeated, the result would be the same. In 1948, telephones
were expensive and those who had them tended to be in an elite group that
favored Dewey much more than the average voter did. Since the newspaper did
its poll by telephone, it inadvertently used an in-sample distribution that was
different from the out-of-sample distribution. That is what sampling bias is.

If the data is sampled in a biased way, learning will pro-
duce a similarly biased outcome.

Applying this principle, we should make sure that the training and testing
distributions are the same; if not, our results may be invalid, or, at the very
least, require careful interpretation.

If you recall, the VC analysis made very few assumptions, but one as-
sumption it did make was that the data set D is generated from the same
distribution that the final hypothesis ¢ is tested on. In practice, we may en-
counter data sets that were not generated under those ideal conditions. There
are some techniques in statistics and in learning to compensate for the ‘mis-
match’ between training and testing, but not in cases where D was generated
with the exclusion of certain parts of the input space, such as the exclusion of
households with no telephones in the above example. There is nothing that
can be done when this happens, other than to admit that the result will not
be reliable — statistical bounds like Hoeffding and VC require a match between
the training and testing distributions.

There are many examples of how sampling bias can be introduced in data
collection. In some cases it is inadvertently introduced by an oversight, as
in the case of Dewey and Truman. In other cases, it is introduced because
certain types of data are not available. For instance, in our credit example of
Chapter 1, the bank created the training set from the database of previous cus-
tomers and how they performed for the bank. Such a set necessarily excludes
those who applied to the bank for credit cards and were rejected, because the
bank does not have data on how they would have performed if they were ac-
cepted. Since future applicants will come from a mixed population including
some who would have been rejected in the past, the ‘test set’ comes from a
different distribution than the training set, and we have a case of sampling
. bias. In this particular case, if no data on the applicants that were rejected is
available, nothing much can be done other than to acknowledge that there is
a bias in the final predictor that learning will produce, since a representative
training set is just not available.

Exercise 5.3

In an experiment to determine the distribution of sizes of fish in a lake, a
net might be used to catch a representative sample of fish. The sample is

172

5. THREE LEARNING PRINCIPLES 5.3. DATA SNOOPING

then analyzed to find out the fractions of fish of different sizes. If the
sample is big enough, statistical conclusions may be drawn about the actual

distribution in the entire lake. Can you smell @ sampling bias?

There are other cases, arguably more common, where sampling bias is intro-
duced by human intervention. It is not that uncommon for someone to throw
away training examples they don’t like! A Wall Street firm who wants to de-
velop an automated trading system might choose data sets when the market
was ‘behaving well’ to train the system, with the semi-legitimate justification
that they don’t want the noise to complicate the training process. They will
surely achieve that if they get rid of the ‘bad’ examples, but they will create a
system that can be trusted only in the periods when the market does behave
welll What happens when the market is not behaving well is anybody’s guess.
In general, throwing away training examples based on their values, e.g., ex-
amples that look like outliers or don’t conform to our preconceived ideas, is a
fairly common sampling bias trap.

Other biases. Sampling bias has also been called selection bias in the statis-
tics community. We will stick with the more descriptive term sampling bias
for two reasons. First, the bias arises in how the data was sampled; second, it
is less ambiguous because in the learning context, there is another notion of
selection bias drifting around — selection of a final hypothesis from the learning
model based on the data. The performance of the selected hypothesis on the
data is optimistically biased, and this could be denoted as a selection bias.
We have referred to this type of bias simply as bad generalization. -

There are various other biases that have similar flavor. There is even
a special type of bias for the research community, called publication bias!
This refers to the bias in published scientific results because negative results
are often not published in the literature, whereas positive results are. The
common theme of all of these biases is that they render the standard statistical
conclusions invalid because the basic premise for such conclusions, that the
sampling distribution is the same as the overall distribution, does not hold
any more. In the field of learning from data, it is sampling bias in the training
set that we need to worry about.

5.3 Data Snooping

Data snooping is the most common trap for practitioners in learning from
data. The principle involved is simple enough,

If a data set has affected any step in the learning process,
its ability to assess the outcome has been compromised.

173

5. THHREE LEARNING PRINCIPLES 5.3, Data Snoopind

Applying this principle, if you want an unbiased assessment of vour learning
performance, you should keep a test set in a vault and never use it for learning
in any way. This is basically what we have been talking about all along in
training versus testing, but it goes beyond that. Even if a data set has not been
‘physically” used for training, it can still atfect the learning process, sometimes
in subtle ways.

Exercise 5.4

Consider the following approach to learning. By looking at the data, it
appears that the data is linearly separable, so we go ahead and use a simple
perceptron, and get a training error of zero after determining the optimal
set of weights. We now wish to make some generalization conclusions, so
we lock up the d..; for our learning mode! and see that it is d + 1. Therefore,
we use this value of d... to get a bound on the test error.

(a) What is the problem with this bound - fs it correct?

(b) Do we know the d... for the learning model that we actually used? It
is this dve that we need to use in the bound.

To avoid the pitfall in the above exercise, it is extremely important that vou
choose your learning model before seeing any of the data. The choice can be
based on general information about the learning problem, such as the num-
ber of data points and prior knowledge regarding the input space and target
function, but not on the actual data set D. Failure to observe this rule will
invalidate the VC bounds, and any generalization conelusions will be up in the
air. Even a careful person can fall into the traps of data snooping. Consider
the following example,

Example 5.3. An investment bank wants to develop a system for forecasting
currency exchange rates. It has 8 years worth of historical data on the US
Dollar (USD) versus the British Pound (GBP), so it tries to use the data to see
if there is any pattern that can be exploited. The bank takes the series of daily
changes in the USD/GBP rate, normalizes it to zero mean and unit variance.
and starts to develop a system for forecasting the direction of the change, For
each day, it tries to predict that direction based on the fluctuations in the
previous 2() days. 75% of the data is used for training, and the remaining 25%
is set aside for testing the final hypothesis.

The test shows great success, The final hypothesis has a hit rate (per-
centage of time getting the direction right) of 52.1%. This may seem modest,
but in the world of finance you can make a lot of money if vou get that
hit rate consistently. Indeed, over the 500 test days (2 vears worth, as each
year has about 250 trading days), the cumulative profit of the system is a
respectahble 229,

174

5. THREE LEArNiNG PRINCIPLES 5.3. Dara SnoorINd

) ancping
g u
E
B
g {1 3
E
=
.
i.]'.'
A
1) SmOOpHng
] [TET] EHI .I?l:l HHI I'H?l.i

When the system is used in live trading, the performance deteriorates sig-
nificantly. In fact, it loses money. Why didn’t the good test performance
continue on the new data? In this case, there is a simple explanation and it
has to do with data snooping. Although the bank was careful to set aside
test points that were not used for training in order to properly evaluate the
final hypothesis, the test data had in fact affected the training process in a
subtle way., When the original series of daily changes was normalized to zero
mean and unit variance, all of the data was involved in this step. Therefore,
the test data that was extracted had already contributed to the choices made
by the learning algorithm by contributing to the values of the mean and the
variance that were used in normalization. Although this seems like a minor
effect, it is data snooping. When you plot the cumulative profit on the test
set with or without that snooping step, you see how snooping resulted in an
over-optimistic expectation compared to the realistic expectation that avoids
SHOOPINE,

It is not the normalization that was a bad idea. It is the involvement of
test data in that normalization, which contaminated this data and rendered
its estimate of the final performance inaccurate,]

One of the most common oceurrences of data snooping is the reuse of the
same data set. If vou try learning using first one model and then another and
then another on the same data set, you will eventually ‘succeed’. As the saying
goes, if you torture the data long enough, it will confess (). If you try all
possible dichotomies, you will eventually fit any data set: this is true whether
we try the dichotomies directly (using a single model) or indirectly (using a
sequence of models). The effective VO dimension for the series of trials will
not be that of the last model that succeeded, but of the entire union of models
that could have been used depending on the outeomes of different trials.

Sometimes the reuse of the same data set is earried out by different people.
Let’s say that there is a public data set that you would like to work on. Before
you download the data, vou read about how other people did with this data set

5. THREE LEARNING PRINCIPLES 5.3. DATA SNOOPING

using different techniques. You naturally pick the most promising techniques
as a baseline, then try to improve on them and introduce your own ideas.
Although you haven’t even seen the data set yet, you are already guilty of
data snooping. Your choice of baseline techniques was affected by the data
set, through the actions of others. You may find that your estimates of the
performance will turn out to be too optimistic, since the techniques you are
using have already proven well-suited to this particular data set.

To quantify the damage done by data snooping, one has to assess the
penalty for model complexity in (2.14) taking the snooping into consideration.
In the public data set case, the effective VC dimension corresponds to a much
bigger hypothesis set than the H that your learning algorithm uses. It covers
all hypotheses that were considered (and mostly rejected) by everybody else
in the process of coming up with the solutions that they published and that
you used as your baseline. This is a potentially huge set with very high VC
dimension, hence the generalization guarantees in (2.14) will be much worse
than without data snooping.

Not all data sets subjected to data snooping are equally ‘contaminated’.
The bounds in (1.6) in the case of a choice between a finite number of hy-
potheses, and in (2.12) in the case of an infinite number, provide guidelines
for the level of contamination. The more elaborate the choice made based on
a data set, the more contaminated the set becomes and the less reliable it will
be in gauging the performance of the final hypothesis.

Exercise 5.5

Assume we set aside 100 examples from D that will not be used in training,
but will be used to select one of three final hypotheses g1, g2, g produced by
three different learning algorithms that train on the rest on the data. Each
algorithm works with a different H of size 500. We would like to characterize
the accuracy of estimating Fous(g) on the selected final hypothesis if we
use the same 100 examples to make that estimate.

(a) What is the value of M that should be used in (1.6) in this situation?

(b) How does the level of contamination of these 100 examples compare
to the case where they would be used in training rather than in the
final selection?

In order to deal with data snooping, there are basically two approaches.

1. Avoid data snooping: A strict discipline in handling the data is required.
Data that is going to be used to evaluate the final performance should
be ‘locked in a safe’ and only brought out after the final hypothesis has
been decided. If intermediate tests are needed, separate data sets should
be used for that. Once a data set has been used, it should be treated as
contaminated as far as testing the performance is concerned.

2. Account for data snooping: If you have to use a data set more than
once, keep track of the level of contamination and treat the reliability of

176

5. THREE LEARNING PRINCIPLES 5.3. DATA SNOOPING

your performance estimates in light of this contamination. The bounds
(1.6) and (2.12) can provide guidelines for the relative reliability of dif-
ferent data sets that have been used in different roles within the learning
process.

Data snooping versus sampling bias. Sampling bias was defined based
on how the data was obtained before any learning; data snooping was defined
based on how the data affected the learning, in particular how the learning
model is selected. These are obviously different concepts. However, there are
cases where sampling bias occurs as a consequence of ‘snooping’ — looking at
data that you are not supposed to look at. Here is an example.

Consider predicting the performance of different stocks based on historical
data. In order to see if a prediction rule is any good, you take all currently
traded companies and test the rule on their stock data over the past 50 years.
Let us say that you are testing the “buy and hold” strategy, where you would
have bought the stock 50 years ago and kept it until now. If you test this
‘hypothesis’, you will get excellent performance in terms of profit. Well, don’t
get too excited! You inadvertently biased the results in your favor by picking
only currently traded companies, which means that the companies that did
not make it are not part of your evaluation. When you put your prediction
rule to work, it will be used on all companies whether they will survive or
not, since you cannot identify which companies today will be the ‘currently
traded’ companies 50 years from now. This is a typical case of sampling bias,
since the problem is that the training data is not representative of the test
data. However, if we trace the origin of the bias, we did ‘snoop’ in this case by
looking at future data of companies to determine which of these companies to
use in our training. Since we are using information in training that we would
not have access to in real trading, this is viewed as a form of data snooping.

177

5. THREE LEARNING PRINCIPLES 5.4. PROBLEMS

5.4 Problems

Problem 5.1 The idea of falsifiability — that a claim can be rendered
false by observed data — is an important principle in experimental science.

Axiom of Non-Falsifiability. If the outcome of an experiment
has no chance of falsifying a particular proposition, then the result
of that experiment does not provide evidence one way or another
toward the truth of the proposition.

Consider the proposition “There is h € H that approximates f as would be
evidenced by finding such an h with in-sample error zero on x1,--- ,xn." We
say that the proposition is falsified if no hypothesis in H can fit the data
perfectly.

(a) Suppose that H shatters x;,--- ,xn. Show that this proposition is not
falsifiable for any f.

(b) Suppose that Eoui(h) = 1 for every h € H. Show that

P[falsification] > 1 — @# .
(c) Suppose dyc = 10 and N = 100. If you obtain a hypothesis h with zero
Ein on your data, what can you 'conclude’ from the result in part (b)?

Problem 5.2 Structural Risk Minimization (SRM) is a useful framework
for model selection that is related to Occam’s Razor. Define a structure — a
nested sequence of hypothesis sets:

The SRM framework picks a hypothesis from each H; by minimizing Ein.

That is, g; = argmin Ein(h). Then, the framework selects the final hy-
heH;

pothesis by minimizing Ei, and the model complexity penalty Q. That is,
g* = argmin(Ei,(g:) + Q(H;)). Note that Q(H;) should be non-decreasing in
i=1,2,

)

because of the nested structure.

(a) Show that the in-sample error Ei,(g;) is non-increasing in <.

178

5. THREE LEARNING PRINCIPLES 5.4. PROBLEMS

(b) Assume that the framework finds g* € #; with probability p;. How does
p; relate to the complexity of the target function?

(c) Argue that the p;'s are unknown but po <p; <ps < --- < 1.
(d) Suppose g* = g;. Show that

) 1 o
P[|Ein(gi) — Eout(g:)| > €| g™ = gi] < o - 4mgy, (2N)e < N8,

Here, the conditioning is on selecting g; as the final hypothesis by SRM.
[Hint: Use the Bayes theorem to decompose the probability and then
apply the VC bound on one of the terms]

You may interpret this result as follows: if you use SRM and end up with g;,
then the generalization bound is a factor i worse than the bound you would
have gotten had you simply started with ;.

Problem 5.3 In our credit card example, the bank starts with some vague
idea of what constitutes a good credit risk. So, as customers x1,X2,...,XnN
arrive, the bank applies its vague idea to approve credit cards for some of these
customers. Then, only those who got credit cards are monitored to see if they
default or not.

For simplicity, suppose that the first N customers were given credit cards.
Now that the bank knows the behavior of these customers, it comes to you
to improve their algorithm for approving credit. The bank gives you the data
(xl,yl), ceey (XN,yN).

Before you look at the data, you do mathematical derivations and come up with
a credit approval function. You now test it on the data and, to your delight,
obtain perfect prediction.

(3) What is M, the size of your hypothesis set?

(b) With such an M, what does the Hoeffding bound say about the probability
that the true performance is worse than 0.1% error for N = 100007?

(c) You give your ¢ to the bank and assure them that the performance will
be better than 0.1% error and your confidence is given by your answer
to part (b). The bank is thrilled and uses your g to approve credit for
new clients. To their dismay, more than half their credit cards are being
defaulted on. Explain the possible reason(s) behind this situation.

(d) Is there a way in which the bank could use your credit approval function
to have your probabilistic guarantee? How? [Hint: The answer is yes!]

179

5. THREE LEARNING PRINCIPLES 5.4. PROBLEMS

Problem 5.4 The S&P 500 is a set of the largest 500 companies currently
trading. Suppose there are 10, 000 stocks currently trading, and there have been
50, 000 stocks which have ever traded over the last 50 years (some of these have
gone bankrupt and stopped trading). We wish to evaluate the profitability of
various ‘buy and hold' strategies using these 50 years of data (roughly 12, 500
trading days).

Since it is not easy to get stock data, we will confine our analysis to today's
S&P 500 stocks, for which the data is readily available.

(a) A stock is profitable if it went up on more than 50% of the days. Of your
S&P stocks, the most profitable went up on 52% of the days (Ein = 0.48).

(i) Since we picked the best among 500, using the Hoeffding bound,

P[|Ein — Eout| > 0.02] < 2 x 500 x ¢~ 2X12500x0.02% 3 g4

There is a greater than 95% chance this stock is profitable. Where
did we go wrong?

(i) Give a better estimate for the probability that this stock is profitable.
[Hint: What should the correct M be in the Hoeffding bound 7]

(b) We wish to evaluate the profitability of ‘buy and hold’ for general stock
trading. We notice that all of our 500 S&P stocks went up on at least 51%
of the days.

i) We conclude that buying and holding a stocks is a good strategy for
y
general stock trading. Where did we go wrong?

(i) Can we say anything regarding buy and hold for general stock trad-
ing?

Problem 5.5 You think that the stock market exhibits reversal, so if
the price of a stock sharply drops you expect it to rise shortly thereafter. If it
sharply rises, you expect it to drop shortly thereafter.

In order to test this hypothesis, you build a trading strategy that buys when the
stocks go down and sells in the opposite case. You collect historical data on
the current S&P 500 stocks, and find that your hypothesis gave a good return
of 12% per year.

(a) When you trade using this system, do you expect it to perform at this
level? Why or why not?

(b) How can you test your strategy so that its performance in sample is more
reflective of what you should expect in reality?

180

Epilogue

This book set the stage for a deeper exploration into Learning From Data by
developing the foundations. It is possible to learn from data, and you have
all the basic tools to do so. The linear model coupled with the right features
and an appropriate nonlinear transform, together with the right amount of
regularization, pretty much puts you into the thick of the game, and you will
be in good stead as long as you keep in mind the three basic principles: simple
is better (Occam’s razor), avoid data snooping and beware of sampling bias.

Where to go from here? There are two main directions. One is to learn
more sophisticated learning techniques, and the other is to explore different
learning paradigms. Let us preview these two directions to give the reader a
better understanding of the ‘map’ of learning from data.

The linear model can be used as a building block for other popular tech-
niques. A cascade of linear models, mostly with soft thresholds, creates a
neural network. A robust algorithm for linear models, based on quadratic
programming, creates support vector machines. An efficient approach to non-
linear transformation in support vector machines creates kernel methods. A
combination of different models in a principled way creates boosting and en-
semble learning. There are other successful models and techniques, and more
to come for sure.

In terms of other paradigms, we have briefly mentioned unsupervised learn-
ing and reinforcement learning. There is a wealth of techniques for these learn-
ing paradigms, including methods that mix labeled and unlabeled data. Active
learning and online learning, which we also mentioned briefly, have their own
techniques and theories. In addition, there is a school of thought that treats
learning as a completely probabilistic paradigm using a Bayesian approach,
and there are useful probabilistic techniques such as Gaussian processes. Last
but not least, there is a school that treats learning as a branch of the theory
of computational complexity, with emphasis on asymptotic results.

Of course, the ultimate test of any engineering discipline is its impact in
real life. There is no shortage of successful applications of learning from data.
Some of the application domains have specialized techniques that are worth
exploring, e.g., computational finance and recommender systems.

Learning from data is a very dynamic field. Some of the hot techniques
and theories at times become just fads, and others gain traction and become

181

EPILOGUE

part of the field. What we have emphasized in this book are the necessary
fundamentals that give any student of learning from data a solid foundation,
and enable him or her to venture out and explore further techniques and
theories, or perhaps to contribute their own.

182

Further Reading

Learning From Data book forum (at AMLBook.com).

Y. S. Abu-Mostafa. The Vapnik-Chervonenkis dimension: Information versus
complexity in learning. Newral Computation, 1(3):312-317, 1989.

Y. S. Abu-Mostafa, X. Song, A. Nicholson, and M. Magdon-Ismail. The bin
model. Technical Report CaltechCSTR:2004.002, California Institute of
Technology, 2004.

R. Ariew. Ockham’s Razor: A Historical and Philosophical Analysis of Ock-
ham’s Principle of Parsimony. University of Illinois Press, 1976.

R. Bell, J. Bennett, Y. Koren, and C. Volinsky. The million dollar program-
ming prize. IEEE Spectrum, 46(5):29-33, 2009.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor.
Information Processing Letters, 24(6):377-380, 1987.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the Association for
Computing Machinery, 36(4):929-965, 1989.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

P. Burman. A comparative study of ordinary cross-validation, v-fold cross-
validation and the repeated learning-testing methods. Biometrika, 76(3):
503-514, 1989.

T. M. Cover. Geometrical and statistical properties of systems of ligear in-
equalities with applications in pattern recognition. IEEE Transactions on

Electronic Computers, 14(3):326-334, 1965.

M. H. DeGroot and M. J. Schervish. Probability and Statistics. Addison
Wesley, fourth edition, 2011.

19

FURTHER READING

V. Fabian. Stochastic approximation methods. Crechoslovak Mathematical
Journal, 10(1):123-159, 1960.

W. Feller. An Introduction to Probability Theory and Its Applications. Wiley,
third edition, 1968.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL
http://archive.ics.uci.edu/ml.

J. H. Friedman. On bias, variance, 0/1 loss, and the curse-of-dimensionality.
Data Mining and Knowledge Discovery, 1(1):55-77, 1997.

S. I. Gallant. Perceptron-based learning algorithms. IFEE Transactions on
Neural Networks, 1(2):179-191, 1990.

Z. Ghahramani. Unsupervised learning. In Advanced Lectures in Machine
Learning (MLSS ’03), pages 72-112, 2004.

G. H. Golub and C. F. van Loan. Matriz computations. Johns Hopkins Uni-
versity Press, 1996.

D. C. Hoaglin and R. E. Welsch. The hat matrix in regression and ANQVA.
American Statistician, 32:17-22, 1978.

W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13-30, 1963.

R. C. Holte. Very simple classification rules perform well on most commonly
used datasets. Machine Learning, 11(1):63-91, 1993.

R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press,
1990.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285, 1996.

A. 1. Khuri. Advanced calculus with applications in statistics. Wiley-
Interscience, 2003.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Con-

Jerence on Artificial intelligence (IJCAI ’95), volume 2, pages 1137-1143,
1995.

J. Langford. Tutorial on practical prediction theory for classification. Journal
of Machine Learning Research, 6:273-306, 2005.

184

FURTHER READING

L. Li and H.-T. Lin. Optimizing 0/1 loss for perceptrons by random coordinate
descent. In Proceedings of the 2007 International Joint Conference on Neural
Networks (IJCNN 07), pages 749-754, 2007.

H.-T. Lin and L. Li. Support vector machinery for infinite ensemble learning.
Journal of Machine Learning Research, 9(2):285-312, 2008.

M. Magdon-Ismail and K. Mertsalov. A permutation approach to validation.
Statistical Analysis and Data Mining, 3(6):361-380, 2010.

M. Magdon-Ismail, A. Nicholson, and Y. S. Abu-Mostafa. Learning in the
presence of noise. In S. Haykin and B. Kosko, editors, Intelligent Signal
Processing. IEEE Press, 2001.

M. Markatou, H. Tian, S. Biswas, and G. Hripcsak. Analysis of variance of
cross-validation estimators of the generalization error. Journal of Machine
Learning Research, 6:1127-1168, 2005.

M. L. Minsky and S. Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, expanded edition, 1988.

T. Poggio and S. Smale. The mathematics of learning: Dealing with data.
Notices of the American Mathematical Society, 50(5):537-544, 2003.

K. Popper. The logic of scientific discovery. Routledge, 2002.

F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386-408, 1958.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan, 1962.

B. Settles. Active learning literature survey. Technical Report 1648, University
of Wisconsin-Madison, 2010.

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. A frame- .
work for structural risk minimisation. In Learning Theory: 9th Annual
Conference on Learning Theory (COLT ’96), pages 68-76, 1996.

L. G. Valiant. A theory of the learnable. Commaunications of the ACM, 27
(11):1134-1142, 1984.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergenc.e.of relative
frequencies of events to their probabilities. Theory of Probability and Its
Applications, 16:264-280, 1971.

185

V. N. Vapnik, E. Levin, and Y. L. Cun. Measuring the VC-dimension of a
learning machine. Neural Computation, 6(5):851-876, 1994.

G.-X. Yuan, C.-H. Ho, and C.-J. Lin. Recent advances of large-scale linear
classification. Proceedings of IEEE, 2012.

T. Zhang. Solving large scale linear prediction problems using stochastic gra-
dient descent algorithms. In Machine Learning: Proceedings of the 21th
International Conference (ICML °04), pages 919-926, 2004.

186

Appendix

Proof of the VC Bound

In this Appendix, we present the formal proof of Theorem 2.5. It is a fairly
elaborate proof, and you may skip it altogether and just take the theorem for
granted, but you won’t know what you are missing ©) !

Theorem A.1 (Vapnik, Chervonenkis, 1971).

P |sup |Ein(h) — Eout(h)| > €| < 4mH(2N)e_§€2N.
hEH

This inequality is called the VC Inequality, and it implies the VC bound of
Theorem 2.5. The inequality is valid for any target function (deterministic
or probabilistic) and any input distribution. The probability is over data
sets of size N. Each data set is generated #d (independent and identically
distributed), with each data point generated independently according to the
joint distribution P(x,y). The event sup,cy |Ein(h) = Eout(h)| > € is equiva-
lent to the union over all A € H of the events |Ei,(h) — Eout(h)] > €; this union
contains the event that involves g in Theorem 2.5. The use of the supremum (a
technical version of the maximum) is necessary since H can have a continuum
of hypotheses.

The main challenge to proving this theorem is that Egu(h) is difficult
to manipulate compared to Ej,(h), because E.u(h) depends on the entire
input space rather than just a finite set of points. The main insight needed
to overcome this difficulty is the observation that we can get rid of Eouc(h)
altogether because the deviations between E;, and Foy can be essentially
captured by deviations between two in-sample errors: Fi, (the original in-
sample error) and the in-sample error on a second data set (Lemma A.2).
This insight results in two main simplifications:

1. The supremum of the deviations over infinitely many h € H can be
reduced to considering only the dichotomies implementable by H on the
two independent data sets. That is where the growth function enters the
picture (Lemma A.3).

187

APPENDIX

2. Compared to deviations between the in- and out-of-sample errors, the
deviations between two independent in-sample errors are ‘easy’ to ana-
Iyvze (Lemma A.4).

The combination of Lemmas A.2, A3 and A4 proves Theorem A1

A.1 Relating Generalization Error to In-Sample
Deviations

Let's introduce a second data set T, which is independent of D, but sampled
according to the same distribution Plx, y). This second data set is called a
ghost data set because it doesn’t really exist; it is a just a tool used in the
analysis. We hope to bound the term P||E}, — E.,.| 15 large| by another term
P||E, — Ei,| is large], which is easier to analyze.

The intoition bhehind the formal proof is as follows, For any single hypoth-
esis h, because D' s fresh, sampled independently from P(x, y), the Hoeffding
Inequality guarantees that £ () = £, (h) with a high probability. That
is, when |Ei,(h) — Eque(h)| is large, with a high probability |E,(h) — EL (h)|
is also large. Therefore, Pl|Eiy(h) — Eaulh)| is large] can be approximately
bounded by B[|Ei.(h) — E{,(h)| is large].

We are tryving to bound the probahbil-
ity that Ej, is far from E,,. Let E (h)
be the ‘in-sample’ error for hypothesis b
on D', Suppose that K, is far from E..,
with some probability (and similarly E],
is far from E.u. with that same prob-
ability, since £y, and E] are identically
distributed). When N is large, the proba-
bility is roughly Gaussian around E,,, as
illustrated in the fgure to the right. The
red region represents the cases when £,
is far from E.. In those cases, E! is far from Ej, about half the time,
as illustrated by the green region. That is, P[|E;, — Euu| is large] can be
approximately bounded by 2P [|E;, — E[,| is large].

This argument provides some intuition that the deviations between Ej,
and E. can be captured by the deviations between £, and E: . The argn-
ment can be carefully extended to multiple hypotheses.

B,

=i

Probability distribution
of &

Lemma A.2.

(1 —2e” 5*3-"")1-"[51113 [Esn(h) = Egue(h)] = rl <P {Mtp |Ein(h) — E{ (h)] = %J :
hEM 1 hey =

where the probability ou the RHS is over D and T jointly.

188

APPENDIX

Proof. We can assume that P’[ﬁup |Einlh) — Eou(h)] > r] = (), otherwise
heM
there is nothing to prove.

P |sup |Einlh) - F:“r‘h\]l > f_!]
LheM

-m]:- |Ein(h) — Ei,(h)| = § and qup |Ein(h) — Equ(h)] }c:[(A1)

LhE

I

= P |sup |Ein(h) = Eouelh)| > f]

LhEH

P |sup B, (h) — Ej,(h)| = £

mn

H'IIP |E111{h':| it F;mﬂ.l::h'}l > {] -
LheE™ hewH
Inequality (A.1) follows because P|B,| = P[B; and Bs| for any two events
By, B, Now, let’s consider the last term:

P |sup |Eu(h) —
he™

()| > §

|r|

sup |Elh) — Bauwlh)| = r] ;

heH

The event on which we are conditioning is a set of data sets with non-zero
probability, Fix a data set D in this event. Let #* be any hypothesis for
which |Ein{h*) — Eaue(h®)| = €. One such hypothesis must exist given that D
is in the event on which we are conditioning. The hypothesis /® does not
depend on ', but it does depend on .

lF sup |Ein (h) — Ej,(h)] > §

LheH

sup |Eiy (h) — Equ(h)| > e]
heH

= P EEmUP'J EL(h*)| > § | sup |Eis(h) — Eouu(h)] }E] (A.2)
heH

sup |Eiu{h, = E'ﬂlll{h” = ‘] {A‘ﬂ'}
heH

> 1 _z!_—.{.-e .\I {A‘dl

> P E (h*) = Ecut(h")| < 5

l. Inequality (A.2) follows hecanse the event Y En(h*) = ELR)| = §7

implies “sup |Ei.(h) — E (h)| = 3"
heM
2. Inequality (A.3) follows because the events *|Ef, (h*) — Ean(h®)] = "
and | By (h*) — Eot(h*)] > €' (which is given) imply *| Eia(h) — B, (h)] >

£

=,
3. Inequality (A1) follows because h* 1s fixed with rﬁp&‘ﬂ"th"ﬂw
can apply the Hoeffding Inequality to P E],(h") — E.u(b®)| < :]

Notice that the Hoeffding Inequality applies to B[|E[(h") — Eout(h®)] = %]

for any h*, as long as h* is fixed with respect to D', Therefore, it also applies.

1549

APPENDIX

to any weighted average of P[|E/, (h*) — Eou(h*)| < 5] based on h*. Finally,
since h* depends on a particular D, we take the weighted average over all D

in the event
“sup |Ein(h) = Eour(h)] > €
heH

on which we are conditioning, where the weight comes from the probability of
the particular D. Since the bound holds for every D in this event, it holds for
the weighted average.)

Note that we can assume e~ 2N < i, because otherwise the bound in
. . _1.2
Theorem A.1 is trivially true. In this case, 1 — 2e~2¢N > %,

implies

so the lemma

P [Sup | Ein(h) — Eout(h)] > e} <2P {sup |Ein(h) — EL (h)] > 51
heH heH

A.2 Bounding Worst Case Deviation Using the
Growth Function

Now that we have related the generalization error to the deviations between
in-sample errors, we can actually work with H restricted to two data sets of
size N each, rather than the infinite . Specifically, we want to bound

P [sup \Bualh) — E\(B)] > 5,
heH

where the probability is over the joint distribution of the data sets D and D'.
One equivalent way of sampling two data sets D and D’ is to first sample a
data set .S of size 2V, then randomly partition S into D and D’. This amounts
to randomly sampling, without replacement, N examples from S for D, leaving
the remaining for D’. Given the joint data set .S, let

5

be the probability of deviation between the two in-sample errors, where the
probability is taken over the random partitions of S into D and D’. By the
law of total probability (with 3~ denoting sum or integral as the case may be),

d

P [sup |Bin(h) — B, ()] > £
heH

P |sup Eia(h) ~ B, (1) >]

= ZP[SJ x P {sup [Ein(h) — Ef,(h)] > 5
5 €H

h g.

IN

sup P [Sup lEin(h) - Elln(h)[> %
S heEH

190

APPENDIX

- Let H(S) be the dichotomies that H can implement on the points in S. By
definition of the growth function, #(S) cannot have more than my(2N) di-

chotomies. Suppose it has M < m3(2N) dichotomies, realized by h1,...,ha.
Thus,

sup lElIl() Elln(h)r sup |E1H(h) - Elln(h’)| .
hcH he{hi,....har}
Then,
P {sup [Ein(h) — EL,(h)] > & S}
=]P)l: m(h)—Eiln(h)’>§ S:l
hE{hh h
<) PlIBa(hm) = By (h)l > 5| 5] (A-5)
< Mx S‘”‘% P [|E(h) — Ely(h)] > 5| 5], (A.6)

where we use the union bound in (A.5), and overestimate each term by the
supremum over all possible hypotheses to get (A.6). After using M < my,(2N)
and taking the sup operation over S, we have proved:

Lemma A.3.
P sup ‘Em(h) - Elln(h)| > %
heH
< my(2N) x sup sup P [|Ein(h) — B (h)] > £] 5],

S heH

where the probability on the LHS is over D and D’ jointly, and the probability
on the RHS is over random partitions of S into two sets D and D’.

The main achievement of Lemma A.3 is that we have pulled the supre-
mum over i € H outside the probability, at the expense of the extra factor
of my (ZN)

A.3 Bounding the Deviation between In-Sample
Errors

We now address the purely combinatorial problem of bounding

sup sup P ['Em(h) - Elln(h)| > % ’ S] ’
S heH

which appears in Lemma A.3. We will prove the following lemma. Then,
Theorem A 1 can be proved by combining Lemmas A.2, A.3 and A.4 taking
1—2e 3N > 1 5 (the only case we need to consider).

191

APPENDIX

Lemma A.4. For any h and any S,
P [|Bin(h) = Eiy(h)] > £ S] < 2e73¢%,
where the probability is over random partitions of S into two sets D and 7',

Proof. To prove the result, we will use a result, which is also due to Hoeffding,
for sampling without replacement:

Lemma A.5 (Hoeffding, 1963). Let A = {ay,..., asn } be a set of values with
an € [0,1], and let p = 5% Ziﬁl an be their mean. Let D = {z1,..., 2y} be
a sample of size N, sampled from A uniformly without replacement. Then

1 N
]Pl:ﬁnz_:lzn_:u‘

We apply Lemma A.5 as follows. For the 2N examples in S, let a, = 1 if
h(xn) # yn and a, = 0 otherwise. The {a,} are the errors made by h on S.
Now randomly partition S into D and 7, i.e., sample N examples from S
without replacement to get D, leaving the remaining N examples for D’. This
results in a sample of size N of the {a,} for D, sampled uniformly without
replacement. Note that

> E:I < 26_262N.

1 1
En(h) = N Z an, and Ej (h) = v Z ay,.

an €D al, €D’

Since we are sampling without replacement, S = DU D’ and DN D' — @, and
S0

2N
1 B +EM
W gy Qo= g

It follows that |Ei, — p| > t < |Ein — Ef,| > 2t. By Lemma A.5,
P(|Ein(h) — Bl (h)| > 2] < 2e~2°N

Substituting ¢ = gives the result. u

192

Notation

B
=

4=

{1} x R4

On ™

Ac

RS D

event (in probability)

set

absolute value of a number, or cardinality (number of ele-
ments) of a set, or determinant of a matrix

square of the norm; sum of the squared components of a
vector

floor; largest integer which is not larger than the argument
the interval of real numbers from a to b

evaluates to 1 if argument is true, and to 0 if it is false
gradient operator, e.g., VE, (gradient of E;,(w) with re-
spect to w)

inverse

pseudo-inverse

transpose (columns become rows and vice versa)

number of ways to choose k objects from N distinct objects
(equals % where ‘! is the factorial)

the set A with the elements from set B removed

zero vector; a column vector whose components are all zeros
d-dimensional Euclidean space with an added ‘zeroth coor-
dinate’ fixed to 1

tolerance in approximating a target

bound on the probability of exceeding ¢ (the approximation
tolerance)

learning rate (step size in iterative learning, e.g., in stochas-
tic gradient descent)

regularization parameter

regularization parameter corresponding to weight budget
C

penalty for model complexity; either a bound on general—
ization error, or a regularization term

logistic function 6(s) = e%/(1 + e?)

feature transform, z = ®(x)

Qth-order polynomial transform

193

NOTATION

Dtrain

Dval
E(h, f)

e(h(x), f(x))

€n

E[]

a coordinate in the feature transform &, z; = ¢;(x)
probability of a binary outcome

fraction of a binary outcome in a sample

variance of noise

learning algorithm

the value of a at which the minimum of the argument is
achieved

an event (in probability), usually ‘bad’ event

the bias term in a linear combination of inputs, also called
Wo

the bias term in bias-variance decomposition

maximum number of dichotomies on N points with a break
point k

bound on the size of weights in the soft order constraint
dimensionality of the input space X = R% or X = {1} x R¢
dimensionality of the transformed space Z

VC dimension of hypothesis set H

data set D = (x1,91), -, (Xn,yn); technically not a set,
but a vector of elements (X, y,). D is often the training
set, but sometimes split into training and validation/test
sets.

subset of D used for training when a validation or test set
is used.

validation set; subset of D used for validation.

error measure between hypothesis h and target function f
exponent of z in the natural base e = 2.71828 - - -
pointwise version of E(h, f), e.g., (h(x) — f(x))?
leave-one-out error on example n when this nth example is
excluded in training [cross validation]

expected value of argument

expected value with respect to x

expected value of y given x

augmented error (in-sample error plus regularization term)
in-sample error (training error) for hypothesis h

cross validation error

out-of-sample error for hypothesis h

out-of-sample error when D is used for training

expected out-of-sample error

validation error

test error

target function, f: X — Y

final hypothesis g € H selected by the learning algorithm;
g X =Yy

final hypothesis when the training set is D

average final hypothesis [bias-variance analysis|

194

NOTATION

sign(-)
sup,(.)

tanh(-
trace(-

O

final hypothesis when trained using D minus some points
gradient, e.g., g = VEj,

a hypothesis h € H; h: X —» Y

a hypothesis in transformed space Z

hypothesis set

hypothesis set that corresponds to perceptrons in ®-
transformed space

restricted hypothesis set by weight budget C [soft order
constraint]

dichotomies (patterns of £:1) generated by H on the points
X1, XN

The hat matrix [linear regression]

identity matrix; square matrix whose diagonal elements are
1 and off-diagonal elements are 0

size of validation set

gth-order Legendre polynomial

logarithm in base e

logarithm in base 2

number of hypotheses

the growth function; maximum number of dichotomies gen-
erated by H on any N points

maximum of the two arguments

number of examples (size of D)

absolute value of this term is asymptotically negligible com-
pared to the argument

absolute value of this term is asymptotically smaller than
a constant multiple of the argument

(marginal) probability or probability density of x
conditional probability or probability density of y given x
joint probability or probability density of x and y
probability of an event

order of polynomial transform

complexity of f (order of polynomial defining f)

the set of real numbers

d-dimensional Euclidean space

signal s = w'x = Y w;x; (¢ goes from 0 to d or 1 to d
depending on whether x has the gy = 1 coordinate or not)
sign function, returning +1 for positive and —1 for negative
supremum; smallest value that is > the argument for all a
number of iterations, number of epochs

iteration number or epoch number

hyperbolic tangent function; tanh(s) = (e*—e~%)/(e*+e~*)
trace of square matrix (sum of diagonal elements)

number of subsets in V-fold cross validation (V x K = N)
direction in gradient descent (not necessarily a unit vector)

195

NOTATION

XOR

o @

N by

unit vector version of v [gradient descent|

the variance term in bias-variance decomposition

weight vector (column vector)

weight vector in transformed space Z

selected weight vector [pocket algorithm]

weight vector that separates the data

solution weight vector to linear regression

regularized solution to linear regression with weight decay
solution weight vector of perceptron learning algorithm
added coordinate in weight vector w to represent bias b
the input x € X. Often a column vector x € R? or x €
{1} x R, z is used if input is scalar.

added coordinate to x, fixed at g = 1 to absorb the biag
term in linear expressions

input space whose elements are x € X’

matrix whose rows are the data inputs x,, |linear regression|
exclusive OR function (returns 1 if the number of 1’s in its
input is odd)

the output y €

column vector whose components are the data set outputs
Y, [linear regression]

estimate of y [linear regression|

output space whose elements are y €)

transformed input space whose elements are z = ®(x)
matrix whose rows are the transformed inputs z, = ®(x,)
[linear regression]

196

Index

active learning, 181 bound by cross-entropy error, 97
definition, 12 bound by squared error, 97
Adaline, 35, 110 clustering, 13
approximation, 27 coin classification, 9, 13
versus generalization, 62-68, 106 combinatorial optimization, 80
artificial intelligence, 5 complexity
augmented error, 132, 157 of H, 26
axiom of non-falsifiability, 178 of f, 27
computational complexity, 181
B(N, k) computational finance, 181
definition, 46 computer vision, 1
lower bound, 69 convex function, 93
upper bound, 48 convex set, 44
backgammon, 12 cost, 28
Bayes optimal decision theory, 10 cost matrix, 29, 115
Bayes theorem, 33 credit approval, 3, 82, 96
Bayesian learning, 181 cross validation, 145-150
bias-variance, 62-66 V-fold, 150
average function, 63 choosing A, 149
dependence on N, d, 158 digits data, 151
example, 65 effective number of examples, 163
impact of noise, 125 exact computation, 149
linear models, 158—-159 leave-one-out, 146
linear regression, 114 linear model, 149
noisy target, 74 linear model, analytic, 164
bin model, 18 model selection, 148
multiple bins, 22 regularized, 165
relationship to learning, 20 summary, 147
binomial distribution, 36 unbiased, 147
boosting, 181 variance, 162
break point cross-entropy, 92

definition, 45
data contamination, 145, 151, 176

Chebyshev inequality, 36 data mining, 15
Chernoff bound, 37 data point, 3
classification data set, 3
for regression, 113 ghost, 188
linear programming algorithm, 110 space of, b4
classification error data snooping, 173-177, 181

197

INDEX

financial trading, 174
nonlinear transform, 103
normalization bias, 174
versus sampling bias, 177
decision stump, 106
design
versus learning, 9
deterministic noise, 124, 128
effect on learning, 151
regularization, 136
similarity to stochastic noise, 136
Dewey, 171
dichotomy, 42
maximum number, 46
perceptron, 43

table, 47
differentiable, 85
twice-, 93, 95

effective number of hypotheses, 41, 53
effective number of parameters, 52, 137,
159
Einstein, 167
ensemble learning, 181
entropy, 168
error measure, 28-30
L1 versus Lz, 38
classification, 28
cross-entropy, 92
fingerprint example, 28
logistic regression, 91
example, 3

false accept, 29, 115
false reject, 29, 115
falsifiability, 178
feasibility of learning
Boolean example, 16
probabilistic, 18
two main questions, 26
visual example, 15
feature selection, 151
feature space, 100
features, 81
nonlinear transform, 99
feature transform, 100, 111, 116-117
final exam, 39
financial forecasting, 1
fingerprint verification, 28, 115

football scam, 170

Gaussian processes, 181
generalization, 39—59
VC bound, 50-59
VC dimension, 50
generalization bound
definition, 40
Devroye, 73
Parrondo and Van den Broek, 73
Rademacher penalty, 73
relative error, 74
VC, see VC generalization bound
generalization error
definition, 40
global minimum, 93
gradient descent, 92-99
algorithm, 95
batch, 97
initialization and termination, 95
stochastic, 97
growth function, 41-50
2-dimensional perceptron, 43
bound, 46-49
convex set, 44
definition, 42
in VC proof, 190
polynomial bound, 50
positive interval, 44
positive ray, 43
two-dimensional perceptron, 43

handwritten digit recognition, 4, 11, 81—
82, 106-107, 151
hat matrix, 87, 112
Hessian matrix, 116
Hoeffding bound, see Hoeffding Inequal-
ity
Hoeffding Inequality, 19, 19-27
and binomial distribution, 36
uniform version, 24
without replacement, 192
hypothesis set, 3
composition, 72
concentric spheres, 69
convex set, 44
monotonic, 71
polynomial, 120
positive interval, 44

198

INDEX

positive ray, 43

positive rectangles, 69
positive-negative interval, 69
positive-negative ray, 69
restricted to inputs, 42

in-sample error, 21
input space, 3
iterative learning, 7

kernel methods, 181

Lagrange multiplier, 131, 157
lasso, 161
law of large numbers, 36, 37
learning
criteria, 26, 78
feasibility, 15-18, 24-26
learning algorithm, 3
learning curve, 66-68, 140, 147
linear regression, 88
learning model
definition, 5
learning problem
summary figure, 30
learning rate, 94, 95
leave-one-out, 146

Legendre polynomials, 123, 128-129, 154,

155

likelihood, 91

linear classification, 77

linear model, 77
bias-variance, 158-159
building block, 181
cross validation, analytic, 164
optimal weight decay, 161
overlooked resource, 107
summary, 96

linear programming, 110, 111

linear regression, 82-88, 111
algorithm, 86
bias and variance, 114

for classification, 96-97, 109-110

learning curve, 88
optimal hypothesis, 111
out of sample, 87-88
out-of-sample error, 112
projection matrix, 86, 113
rank deficient, 114

using classification algorithm, 113

linearly separable, 6, 78
example, 6

local minimum, 93

logistic function, 89

logistic regression, 88-99
algorithm, 95
cross-entropy error, 92
error measure, 91-92
for classification, 96-97, 115
hard threshold, 115
initialization, 95
optimal decision theory, 115
termination, 96

loss matrix, 38

machine learning, vii, 14
maximum likelihood, 91
medical diagnosis, 1
minimum description length, 168
model selection, 141-145
choosing A, 134, 149
cross validation, 148
experiment, 144
summary, 143
monotonic functions, 71
VC dimension, 71
movie rating, 1-3
multiclass, 81

Netflix, 1
neural network, 181
Newton’s method, 116
noise

deterministic, 124

stochastic, 124
non-falsifiability, 178

axiom, 170

picking financial traders, 170
non-separable data, 79-81
nonlinear regression, 104
nonlinear transformation, 99
normalization, 175
NP-hard, 80

objective, 28 v
Occam’s razor, 167-171, 181
off training set error, 37

Q, 58

199

INDEX

online learning, 98, 181
definition, 12

ordinary least squares, 86

out-of-sample error, 21

outliers, 79

output space, 3

overfitting, 119165, 171
definition, 119
experiment, 123, 155
learning curves, 122

pattern recognition, 9
penalty
hypothesis complexity, 126, 133
model complexity, 58
perceptron, 5-8, 78-82
definition, 5
experiment, 34
learning algorithm (PLA), 7
my (N), 70
PLA convergence, 33
pocket algorithm, 80
perceptron learning algorithm, 7, 77, 78,
98, 109-110
and SGD, 98
convergence, 33
figure, 7, 83
PLA, see perceptron learning algorithm
pocket algorithm, 80, 97, 109
figure, 83
poll, 19
Truman versus Dewey, 171
polynomial transform, 104
polynomials, 120
positive interval, 44
positive ray, 43
postal scam, 170
prediction of heart attacks, 89
probability
logistic regression, 89
union bound, 24, 41
projection matrix, 113
pseudo-inverse, 85
numerical stability, 86
publication bias, 173

quadratic programming, 181

random sample, 19

recommender systems, 1, 15, 181
regression, 77, 82
logistic, 89
regularization, 126—-137, 181
FEin versus A, 156
augmented error, 132
choosing A, 134, 149
input noise, 160
lasso, 161
linear model, 133
ridge regression, 132
soft order constraint, 128
Tikhonov, 131, 160
VC dimension, 137
weight decay, 132
regularization parameter, A\, 133
reinforcement learning, 12, 181
ridge regression, 132
risk, 28
risk matrix, 38, see also cost matrix

sample complexity, 56-57
sampling bias, 171-173, 181

versus data snooping, 177
Sauer’s Lemma, 48
search engines, 1
selection bias, 173
SGD, see stochastic gradient descent
shatter, 42
sigmoid, 90
singular value decomposition, 114
soft order constraint, 157
soft threshold, 90
spam, 4, 6
squared error, 61, 66, 84, 140
SRM, see structural risk minimization
statistics, 14
stochastic gradient descent, 97-99, 110
stochastic noise, 124
streaming data, 12
structural risk minimization, 178
superstition, 119
supervised learning

definition, 11
support vector machines, 181
supremum, 187
SVD, see singular value decomposition

tanh, 90

200

INDEX

vvRv

V aVie

target distribution, 31
target function, 3
noisy, 30-32, 83, 87
test set, 59
Tikhonov regularizer, 131
Tikhonov smoothness penalty, 162
training examples, 4
Truman, 171

underfitting, 135

union bound, 24, 41

unlabeled data, 13, 181

unsupervised learning, 13, 181
learning a language, 13

validation, 137-141
cross validation, 145
model selection, 141
summary, 141
validation set, 138
validation error, 138
expectation, 138
optimistic bias, 142
variance, 139
validation set
VC bound, 139, 163
Vapnik-Chervonenkis, see VC
VC dimension, 50
d-dimensional perceptron, 52

and number of parameters, 72

definition, 50
effective, 137

intersection of hypothesis sets, 71

monotonic functions, 71
of composition, 72
union of hypothesis sets, 71

linear model, 133
negative A, 156
optimal A, 161
virtual examples, 157

Z space, 99-102

VC generalization bound, 53, 78, 87, 102

definition, 53

proof, 187

sketch of proof, 53
VC Inequality, 187
vending machines, 9
virtual examples, 157

weight decay, 132
cross validation error, 149
example, 126
gradient descent, 156

invariance under linear transform, 162

201

	Image 0001
	Image 0002
	Image 0003
	Image 0004
	Image 0005
	Image 0006
	Image 0007
	Image 0008
	Image 0009
	Image 0010
	Image 0011
	Image 0012
	Image 0013
	Image 0014
	Image 0015
	Image 0016
	Image 0017
	Image 0018
	Image 0019
	Image 0020
	Image 0021
	Image 0022
	Image 0023
	Image 0024
	Image 0025
	Image 0026
	Image 0027
	Image 0028
	Image 0029
	Image 0030
	Image 0031
	Image 0032
	Image 0033
	Image 0034
	Image 0035
	Image 0036
	Image 0037
	Image 0038
	Image 0039
	Image 0040
	Image 0041
	Image 0042
	Image 0043
	Image 0044
	Image 0045
	Image 0046
	Image 0047
	Image 0048
	Image 0049
	Image 0050
	Image 0051
	Image 0052
	Image 0053
	Image 0054
	Image 0055
	Image 0056
	Image 0057
	Image 0058
	Image 0059
	Image 0060
	Image 0061
	Image 0062
	Image 0063
	Image 0064
	Image 0065
	Image 0066
	Image 0067
	Image 0068
	Image 0069
	Image 0070
	Image 0071
	Image 0072
	Image 0073
	Image 0074
	Image 0075
	Image 0076
	Image 0077
	Image 0078
	Image 0079
	Image 0080
	Image 0081
	Image 0082
	Image 0083
	Image 0084
	Image 0085
	Image 0086
	Image 0087
	Image 0088
	Image 0089
	Image 0090
	Image 0091
	Image 0092
	Image 0093
	Image 0094
	Image 0095
	Image 0096
	Image 0097
	Image 0098
	Image 0099
	Image 0100
	Image 0101
	Image 0102
	Image 0103
	Image 0104
	Image 0105
	Image 0106
	Image 0107
	Image 0108

